Math, asked by thanandini57, 11 months ago

can you answer fast ​

Attachments:

Answers

Answered by Rohit18Bhadauria
3

Given:

Gradient to the curve xy+ax+by=0 at (1,1)= 2

To Find:

  • Value of a+2b

Solution:

We know that,

↬ Gradient means slope or differentiation

\bf{\dfrac{d}{dx}(a\times b)=a \dfrac{d}{dx}(b)+b\dfrac{d}{dx}(a)}

where a and b are functions of x

\bf{\dfrac{d}{dx}(x)=1}

So,

It is given that \sf{\dfrac{dy}{dx}=2}

Now,

On differentiating given curve w.r.t x, we get

\longrightarrow\sf{x\dfrac{dy}{dx}+y(1)+a(1)+b\dfrac{dy}{dx}=0}

\longrightarrow\sf{x\dfrac{dy}{dx}+y+a+b\dfrac{dy}{dx}=0}

\longrightarrow\sf{x\dfrac{dy}{dx}+b\dfrac{dy}{dx}+y+a=0}

\longrightarrow\sf{(x+b)\dfrac{dy}{dx}+y+a=0}

Now, above curve passes through (1,1), so it will satisfy the equation

\longrightarrow\sf{(1+b)\dfrac{dy}{dx}+1+a=0}

Also, after putting the value of dy/dx, we get

\longrightarrow\sf{(1+b)(2)+1+a=0}

\longrightarrow\sf{2+2b+1+a=0}

\longrightarrow\sf{a+2b+3=0}

\longrightarrow\sf\pink{a+2b=-3}

Hence, the value of a+2b is -3.

Similar questions