Science, asked by KingNinjas, 11 months ago

Cant we just genetically boost the photosynthesis process of plants and stop global warming? ​

Answers

Answered by pawankumar856
1

Two studies published today in Science show different ways that beefing up the process by which plants create energy — called carbon fixation, or photosynthesis — could lead to a better future. In one, scientists decided that the entire process of carbon fixation was too slow and created a new, and faster, cycle. In the other, researchers engineered plants so they could absorb more sunlight. These enhanced plants grew up to 20 percent bigger, which is a big deal for food supply.

SCIENTISTS MADE A COMPLETELY NEW PHOTOSYNTHESIS SYSTEM

Plants are some of our best allies in the climate change fight. Global warming happens because of too much carbon dioxide in the atmosphere, and we add CO2 through activities like burning fossil fuels for energy. Because plants absorb carbon dioxide, they suck up some of the extra CO2 in the air and can even buy us extra time on global warming. But photosynthesis isn’t as efficient as it could be, so scientists are teaching plants how to do their jobs better to make our own lives easier. There may be other benefits besides locking down carbon: better plant growth means more food for a booming human population.

To make carbon fixation happen, organisms use molecules called enzymes. But the main enzyme doesn’t work very fast, says Tobias Erb, a synthetic biologist at the Max Planck Institute for Terrestrial Microbiology who is a co-author of one of the Science papers.

His team decided that they could design a way to make the process happen more quickly. They spent years figuring out which combination of enzymes would work together to get the job done. In the end, a combination of 17 enzymes fit the bill. These enzymes come from nine organisms (including e. coli bacteria and the human liver). Three of the enzymes were designed using a computer; that’s how delicate the balance is. When these enzymes are combined together, they can turn carbon dioxide into organic compounds better than plants and other organisms currently do.

Similar questions