carbon dioxide's concentration varies with the various of the level of
Answers
Explanation:
Effects of Increasing Carbon Dioxide Levels and Climate Change on Plant Growth, Evapotranspiration, and Water Resources
Leon Hartwell Allen, Jr.
U.S. Department of Agriculture
Gainesville, Florida
The atmospheric carbon dioxide concentration has risen from about 270 parts per million (ppm) before 1700 to about 355 ppm today. Climate changes, including a mean global surface temperature rise of between 2.8 and 5.2°C, have been predicted by five independent general circulation models (GCMs) for a doubling of the carbon dioxide concentration. The objectives of this paper are to examine plant responses to rising carbon dioxide levels and climatic changes and to interpret the consequences of these changes on crop water use and water resources for the United States.
BACKGROUND: PLANT RESPONSES TO ENVIRONMENTAL FACTORS
The main purpose of irrigation is to supply plants with adequate water for transpiration and for incorporating the element hydrogen in plant tissues through photosynthesis and subsequent biosynthesis of various tissues and organs. Transpirational flux requires several hundred times more water than photosynthesis.
In a series of U.S. Department of Agriculture studies beginning in 1910 in Akron, Colorado, Briggs and Shantz (1913a,b; 1914) showed that the water requirement of plants is linearly related to the biomass production of plants. They established this linear relationship by growing plants in metal containers filled with soil. Throughout the period of growth, they monitored water use carefully by weighing and adding measured amounts of water to maintain a desirable soil water content as water lost by plant transpiration was replenished.
Carbon dioxide (CO
2) is an important trace gas in Earth's atmosphere. It is an integral part of the carbon cycle, a biogeochemical cycle in which carbon is exchanged between the Earth's oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds. CO
2 absorbs and emits infrared radiation at wavelengths of 4.26 μm (2347 cm−1) (asymmetric stretching vibrational mode) and 14.99 μm (666 cm−1) (bending vibrational mode) and consequently is a greenhouse gas that plays a significant role in influencing Earth's surface temperature through the greenhouse effect.[1]
Carbon dioxide in Earth's troposphere
2011 carbon dioxide mole fraction in the troposphere
vte
Concentrations of CO
2 in the atmosphere were as high as 4,000 parts per million (ppm, on a molar basis) during the Cambrian period about 500 million years ago to as low as 180 ppm during the Quaternary glaciation of the last two million years. Reconstructed temperature records for the last 420 million years indicate that atmospheric CO
2 concentrations peaked at ~2000 ppm during the Devonian (∼400 Myrs ago) period, and again in the Triassic (220–200 Myrs ago) period. Global annual mean CO
2 concentration has increased by more than 45% since the start of the Industrial Revolution, from 280 ppm during the 10,000 years up to the mid-18th century[2] to 415 ppm as of May 2019.[][4] The present concentration is the highest for 14 million years.[5] The increase has been attributed to human activity, particularly deforestation and the burning of fossil fuels.[6] This increase of CO
2 and other long-lived greenhouse gases in Earth's atmosphere has produced the current episode of global warming. Between 30% and 40% of the CO
2 released by humans into the atmosphere dissolves into the oceans,[7][8] wherein it forms carbonic acid and effects changes in the oceanic pH balance.
and look at the......⊙.☉.......
{Please do not report if the answer is wrong, we have tried our best to give you the correct answer}