Physics, asked by Anonymous, 7 months ago

(CENTRE OF MASS, Class 11)

Give proper explanation and answer it correctly.

❌❌Don't spam❌❌​

Attachments:

Answers

Answered by Anonymous
11

Solution:-

\setlength{\unitlength}{1.2mm}\begin{picture}(8,2)\thicklines\put(15,6){\line(0,1){50}}\multiput(15,6)(0,1.5){33}{\line(1,2){1.8}}\put(12,30){\vector( - 4,0){65}}\put(12,30){\vector(4, - 0){0.3}} \put( -55,6){\line(0,1){50}}\multiput( - 56.8,4.8)(0,1.5){33}{\line(1,2){1.8}} \qbezier( -8,30)( -8 ,30)(15,55)\qbezier( -35,30)(  - 35 ,30)( - 55,55)\put( - 8, 30){\vector(0,1){22}}\put( - 35, 30){\vector(0,1){22}}\put( - 20,  30){\vector(0, - 1){15}}\put( - 22,28){\vector( - 1,0){11.5}}\put( - 22,28){\vector(1,0){1}}\qbezier( - 4,34)( - 6,36)( - 8,34)\qbezier( - 35,34)( -35,35)( - 38,34)\qbezier( - 55,50)( -53,48)( - 52,52)\qbezier(15,50)(12,48)(12,52)\put( - 29,25){ \sf{d}}\put( - 19,16){ \sf{w}}\put( - 49,26){ \sf{$ \sf T_1 Sin\:37^\circ$}}\put( - 2,26){ \sf{$ \sf T_2 Sin\:53^\circ$}}\put( - 54.5,47){ \sf{$ \sf 37^\circ$}}\put( 10,47){ \sf{$ \sf 53^\circ$}}\put( - 39.5,36){ \sf{$ \sf 37^\circ$}}\put( -7.9,36){ \sf{$ \sf 53^\circ$}}\put( - 40,54){ \sf{$ \sf T_1 cos\:37^\circ$}}\put( -13,54){ \sf{$ \sf T_1 cos \: 53^\circ$}}\end{picture}

We can see the bar is in equilibrium so

 \rm \:  \to \sum  F = 0

 \rm \to \:  \Sigma \tau = 0

Now take 36.9 as 37 and 53.1 as 53 for making easy calculations

=> Horizontal force

 \rm \: T_1  \sin37 ^o = T_2 \sin53 {}^{o}

Now value of sin37 is 3/5 and sin53 is 4/5

 \rm \: T_1   \times  \dfrac{3}{5}  = T_2   \times \dfrac{4}{5}

 \boxed{\rm \: T_1  \dfrac{3}{4}  = T_2   }

=> Vertical force

 \rm \: T _{1}  \cos37^{o}  + T _{2}  \cos53^{o}   = w

\rm \: T_1   \times  \dfrac{4}{5}   +  T_2   \times \dfrac{3}{5}  = w

now we have

 \to\rm \: T_1  \dfrac{3}{4}  = T_2

So we get

\rm \: T_1   \times  \dfrac{4}{5}   + \dfrac{3}{4}   T_1   \times \dfrac{3}{5}  = w

 \boxed{\rm \: T_1  \dfrac{5}{4}  = w}

Now we have three unknown value or 2 equation now we using

 \Sigma \tau = 0

So we know that torques in clockwise is +ve

and torques in anticlockwise is - ve

 \rm \: (T _{1}  \cos37^{o}  )d - (T _{2}  \cos53^{o}  )(2 - d) = 0

\rm \: T _{1}  ( \dfrac{4}{5}  )d - ( \dfrac{3}{4} T _{1} ) \ (\dfrac{3}{5}  )(2 - d) = 0

\rm \: \cancel{ T _{1}  }( \dfrac{4}{ \cancel5}  )d - ( \dfrac{3}{4} \cancel{ T _{1} )} \ (\dfrac{3}{ \cancel5}  )(2 - d) = 0

we get

 \rm \: 4d =  \dfrac{9}{4}  \times (2 - d)

 \rm \: 4d =  \dfrac{9}{4}  \times 2 -  \dfrac{9}{4}

 \rm \: 4d +  \dfrac{9}{4} d =  \dfrac{9}{2}

Taking lcm

 \rm \:  \rm \:  \dfrac{16d + 9d}{ \not{4}}  =  \dfrac{9}{ \not2}

 \rm \:  \to \: d =  \dfrac{18}{25} m


shadowsabers03: Excellent!
Vamprixussa: :meow-wow:
Answered by Anonymous
1

Answer:

We can see the bar is in equilibrium so

\rm \: \to \sum F = 0→∑F=0

\rm \to \: \Sigma \tau = 0→Στ=0

Now take 36.9⁰ as 37⁰ and 53.1 as 53⁰ for making easy calculations

=> Horizontal force

\rm \: T_1 \sin37 ^o = T_2 \sin53 {}^{o}T

1

sin37

o

=T

2

sin53

o

Now value of sin37⁰ is 3/5 and sin53⁰ is 4/5

\rm \: T_1 \times \dfrac{3}{5} = T_2 \times \dfrac{4}{5}T

1

×

5

3

=T

2

×

5

4

\boxed{\rm \: T_1 \dfrac{3}{4} = T_2 }

T

1

4

3

=T

2

=> Vertical force

\rm \: T _{1} \cos37^{o} + T _{2} \cos53^{o} = wT

1

cos37

o

+T

2

cos53

o

=w

\rm \: T_1 \times \dfrac{4}{5} + T_2 \times \dfrac{3}{5} = wT

1

×

5

4

+T

2

×

5

3

=w

now we have

\to\rm \: T_1 \dfrac{3}{4} = T_2→T

1

4

3

=T

2

So we get

\rm \: T_1 \times \dfrac{4}{5} + \dfrac{3}{4} T_1 \times \dfrac{3}{5} = wT

1

×

5

4

+

4

3

T

1

×

5

3

=w

\boxed{\rm \: T_1 \dfrac{5}{4} = w}

T

1

4

5

=w

Now we have three unknown value or 2 equation now we using

\Sigma \tau = 0Στ=0

So we know that torques in clockwise is +ve

and torques in anticlockwise is - ve

\rm \: (T _{1} \cos37^{o} )d - (T _{2} \cos53^{o} )(2 - d) = 0(T

1

cos37

o

)d−(T

2

cos53

o

)(2−d)=0

\rm \: T _{1} ( \dfrac{4}{5} )d - ( \dfrac{3}{4} T _{1} ) \ (\dfrac{3}{5} )(2 - d) = 0T

1

(

5

4

)d−(

4

3

T

1

) (

5

3

)(2−d)=0

\rm \: \cancel{ T _{1} }( \dfrac{4}{ \cancel5} )d - ( \dfrac{3}{4} \cancel{ T _{1} )} \ (\dfrac{3}{ \cancel5} )(2 - d) = 0

T

1

(

5

4

)d−(

4

3

T

1

)

(

5

3

)(2−d)=0

we get

\rm \: 4d = \dfrac{9}{4} \times (2 - d)4d=

4

9

×(2−d)

\rm \: 4d = \dfrac{9}{4} \times 2 - \dfrac{9}{4}4d=

4

9

×2−

4

9

\rm \: 4d + \dfrac{9}{4} d = \dfrac{9}{2}4d+

4

9

d=

2

9

Taking lcm

\rm \: \rm \: \dfrac{16d + 9d}{ \not{4}} = \dfrac{9}{ \not2}

4

16d+9d

=

2

9

\rm \: \to \: d = \dfrac{18}{25} m→d=

25

18

m

Similar questions