(CENTRE OF MASS, Class 11)
Give proper explanation and answer it correctly.
❌❌Don't spam❌❌
Answers
Solution:-
We can see the bar is in equilibrium so
Now take 36.9⁰ as 37⁰ and 53.1 as 53⁰ for making easy calculations
=> Horizontal force
Now value of sin37⁰ is 3/5 and sin53⁰ is 4/5
=> Vertical force
now we have
So we get
Now we have three unknown value or 2 equation now we using
So we know that torques in clockwise is +ve
and torques in anticlockwise is - ve
we get
Taking lcm
Answer:
We can see the bar is in equilibrium so
\rm \: \to \sum F = 0→∑F=0
\rm \to \: \Sigma \tau = 0→Στ=0
Now take 36.9⁰ as 37⁰ and 53.1 as 53⁰ for making easy calculations
=> Horizontal force
\rm \: T_1 \sin37 ^o = T_2 \sin53 {}^{o}T
1
sin37
o
=T
2
sin53
o
Now value of sin37⁰ is 3/5 and sin53⁰ is 4/5
\rm \: T_1 \times \dfrac{3}{5} = T_2 \times \dfrac{4}{5}T
1
×
5
3
=T
2
×
5
4
\boxed{\rm \: T_1 \dfrac{3}{4} = T_2 }
T
1
4
3
=T
2
=> Vertical force
\rm \: T _{1} \cos37^{o} + T _{2} \cos53^{o} = wT
1
cos37
o
+T
2
cos53
o
=w
\rm \: T_1 \times \dfrac{4}{5} + T_2 \times \dfrac{3}{5} = wT
1
×
5
4
+T
2
×
5
3
=w
now we have
\to\rm \: T_1 \dfrac{3}{4} = T_2→T
1
4
3
=T
2
So we get
\rm \: T_1 \times \dfrac{4}{5} + \dfrac{3}{4} T_1 \times \dfrac{3}{5} = wT
1
×
5
4
+
4
3
T
1
×
5
3
=w
\boxed{\rm \: T_1 \dfrac{5}{4} = w}
T
1
4
5
=w
Now we have three unknown value or 2 equation now we using
\Sigma \tau = 0Στ=0
So we know that torques in clockwise is +ve
and torques in anticlockwise is - ve
\rm \: (T _{1} \cos37^{o} )d - (T _{2} \cos53^{o} )(2 - d) = 0(T
1
cos37
o
)d−(T
2
cos53
o
)(2−d)=0
\rm \: T _{1} ( \dfrac{4}{5} )d - ( \dfrac{3}{4} T _{1} ) \ (\dfrac{3}{5} )(2 - d) = 0T
1
(
5
4
)d−(
4
3
T
1
) (
5
3
)(2−d)=0
\rm \: \cancel{ T _{1} }( \dfrac{4}{ \cancel5} )d - ( \dfrac{3}{4} \cancel{ T _{1} )} \ (\dfrac{3}{ \cancel5} )(2 - d) = 0
T
1
(
5
4
)d−(
4
3
T
1
)
(
5
3
)(2−d)=0
we get
\rm \: 4d = \dfrac{9}{4} \times (2 - d)4d=
4
9
×(2−d)
\rm \: 4d = \dfrac{9}{4} \times 2 - \dfrac{9}{4}4d=
4
9
×2−
4
9
\rm \: 4d + \dfrac{9}{4} d = \dfrac{9}{2}4d+
4
9
d=
2
9
Taking lcm
\rm \: \rm \: \dfrac{16d + 9d}{ \not{4}} = \dfrac{9}{ \not2}
4
16d+9d
=
2
9
\rm \: \to \: d = \dfrac{18}{25} m→d=
25
18
m