Physics, asked by mahnoorphysicst, 7 hours ago

Centre of mass of thin strip bent to form a semicircle of radius R is

Answers

Answered by chris888
0

Answer:

Centre of mass of a semi-circular ring of Radius R;

Calculation:

Linear mass density of ring

\lambda = \dfrac{m}{\pi R }λ=

πR

m

= > \dfrac{dm}{dy} = \dfrac{m}{\pi R }=>

dy

dm

=

πR

m

= > dm = \dfrac{m}{\pi R } \times (dy)=>dm=

πR

m

×(dy)

= > dm = \dfrac{m}{\pi R } \times (R \: d \theta)=>dm=

πR

m

×(Rdθ)

= > dm = \dfrac{m \: d \theta}{\pi }=>dm=

π

mdθ

So, centre of mass :

\displaystyle \: \bar{y} = \dfrac{1}{m} \int \: y \: dm

y

ˉ

=

m

1

∫ydm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: dm=>

y

ˉ

=

m

1

∫Rcos(θ)dm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: \frac{m \: d\theta}{\pi}=>

y

ˉ

=

m

1

∫Rcos(θ)

π

mdθ

= > \displaystyle \: \bar{y} = \dfrac{1}{\pi} \int \: R \cos( \theta) \: d \theta=>

y

ˉ

=

π

1

∫Rcos(θ)dθ

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int \: \cos( \theta) \: d \theta=>

y

ˉ

=

π

R

∫cos(θ)dθ

Putting limit ;

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int_{0}^{\pi} \: \cos( \theta) \: d \theta=>

y

ˉ

=

π

R

0

π

cos(θ)dθ

= > \displaystyle \: \bar{y} = \dfrac{2R}{\pi}=>

y

ˉ

=

π

2R

So, final answer is:

\boxed{ \red{ \large{ \sf{ \: \bar{y} = \dfrac{2R}{\pi}}}}}

y

ˉ

=

π

2R

Similar questions