Math, asked by anuk3095, 10 months ago

Centroid of triangle vertices are (-4,4),(-2,2),(-6,6)

Answers

Answered by BrainlyConqueror0901
7

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Coordinate\:of\:G=(-4,4)}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : }  \\  \implies Coordinate \: of \: A= ( - 4,4) \\  \\  \implies Coordinate \: of \: B = ( - 2,2) \\  \\  \implies Coordinate \: of \: C = (- 6,6)  \\  \\  \underline \bold{To \: Find : } \\  \implies Coordinate \: of \: G = ?

• According to given question :

 \bold{Using \: centroid \: formula  : } \\ \\  \bold{For \: x : } \\ \implies x =  \frac{ x_{ 1 } +x_{ 2 } +x_{ 3 } }{3}  \\  \\ \implies x =  \frac{ - 4 - 2 - 6}{3}  \\  \\  \implies x =  \frac{  \cancel{- 12}}{ \cancel3}  \\  \\  \bold{ \implies x =  -  4} \\  \\  \bold{for \:y : }  \\ \implies y =  \frac{y_{ 1 } + y_{ 2 } + y_{ 3}}{3}   \\  \\  \implies y =  \frac{4 + 2 + 6}{3}  \\  \\  \implies y =  \frac{\cancel{12}}{\cancel3}  \\  \\   \bold{\implies y = 4}

Answered by sushiladevi4418
1

Answer:

Centroid Coordinates are (-4,4)

Step-by-step explanation:

Let A(-4,4) , B(-2,2) and (-6,6) be three vertices of the given ΔABC and (x,y) be the co-ordinates of the centroid of the triangle.

Now, by centroid formula, (x,y) = {\frac{x1 + x2 + x3}{3}, \frac{y1+ y2+ y3}{3}}

so, on putting this formula, we get

x = \frac{ -4 -2 -6}{3}

and y = \frac{4+ 2 + 6}{3}

or, x = \frac{-12}{3} = -4

and y= \frac{12}{3} = 4

So, centroid coordinates of the triangle are (-4,4)

Similar questions