Math, asked by Anonymous, 1 month ago

challenge For all Aryabhatta's and Moderators .5 Stars , 2 Aryabhatta and 2 Moderators are watching my this question but don't Gave the answer .

Ans : 7 , -17/2 .

Don't Spam . Did it on your own intelligence
. It is 7 not -7.

Spam Answers will be deleted in 30 minutes . ​

Attachments:

Answers

Answered by BrainlyPopularman
18

GIVEN :

A limit –

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ {1}^{a} +  {2}^{a} +. . . . . . . +  {n}^{a}}{(n + 1)^{a - 1}[(na + 1) + (na + 2) +. . . . . . . +  (na + n)]} =  \dfrac{1}{60}  \\

TO FIND :

• Value of 'a' = ?

SOLUTION :

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ {1}^{a} +  {2}^{a} +. . . . . . . +  {n}^{a}}{(n + 1)^{a - 1}[(na + 1) + (na + 2) +. . . . . . . +  (na + n)]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ {1}^{a} +  {2}^{a} + . . . . . . . +  {n}^{a}}{(n + 1)^{a - 1}[(na + na +. . . . . . . +n - times) + (1 + 2 +. . . . . . . + n)]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ {1}^{a} +  {2}^{a} +. . . . . . . +  {n}^{a}}{(n + 1)^{a - 1} \left[n(na) + \dfrac{n(n + 1)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ {1}^{a} +  {2}^{a} +. . . . . . . +  {n}^{a}}{(n + 1)^{a - 1} \left[ {n}^{2}a+ \dfrac{n(n + 1)}{2} \right]} =  \dfrac{1}{60}  \\

• We know that –

  \\ \longrightarrow \bf 1 + 2 +. . . . . . . + n = \dfrac{n(n + 1)}{2} = \dfrac{{n}^{2} }{2} + \dfrac{n}{2}\\

  \\ \longrightarrow \bf 1^{2}  + 2^{2}  + . . . . . . . + n^{2}  = \dfrac{n(n + 1)(2n + 1)}{6} = \dfrac{{n}^{3} }{3} + \dfrac{ {n}^{2} }{c} +. . . . . . . \:  \:  \:  \:  \:  \:  \:  \:  \: [c \to constant]\\

  \\ \longrightarrow \bf 1^{3}  + 2^{3}  + . . . . . . . + n^{3}  =  \left[\dfrac{n(n + 1)}{2} \right]^{2} = \dfrac{{n}^{4} }{4} + \dfrac{ {n}^{3} }{c} +. . . . . . . \:  \:  \:  \:  \:  \:  \:  \:  \: [c \to constant]\\

• Similarly –

  \\ \longrightarrow \bf 1^{a}  + 2^{a}  + . . . . . . . + n^{a} =  \dfrac{{n}^{a + 1} }{a + 1} + \dfrac{ {n}^{a} }{c} +. . . . . . . \:  \:  \:  \:  \:  \:  \:  \:  \: [c \to constant]\\

• So that –

  \\ \implies \bf \lim_{n \to \infty } \dfrac{ \dfrac{{n}^{a + 1} }{a + 1} + \dfrac{ {n}^{a} }{c} +. . . . . . . }{ {(n)}^{a - 1}  \left(1 +  \dfrac{1}{n}  \right)^{a - 1} \left[ {n}^{2}a+ \dfrac{n(n + 1)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{(n)^{a + 1} \left[\dfrac{1}{a + 1} + \dfrac{1}{nc} +. . . . . . . \right]}{ {(n)}^{a - 1}  \left(1 +  \dfrac{1}{n}  \right)^{a - 1} \left[ {n}^{2}a+ \dfrac{n(n + 1)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{(n)^{a + 1} \left[\dfrac{1}{a + 1} + \dfrac{1}{nc} +. . . . . . . \right]}{ {(n)}^{a - 1}  \left(1 +  \dfrac{1}{n}  \right)^{a - 1} ( {n}^{2} )\left[a+ \dfrac{(1 +1/n)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{(n)^{a + 1} \left[\dfrac{1}{a + 1} + \dfrac{1}{nc} +. . . . . . . \right]}{ {(n)}^{a  + 1}  \left(1 +  \dfrac{1}{n}  \right)^{a - 1} \left[a+ \dfrac{(1 +1/n)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \lim_{n \to \infty } \dfrac{\left[\dfrac{1}{a + 1} + \dfrac{1}{nc} + . . . . . . . \right]}{\left(1 +  \dfrac{1}{n}  \right)^{a - 1} \left[a+ \dfrac{(1 +1/n)}{2} \right]} =  \dfrac{1}{60}  \\

• Now apply limit –

  \\ \implies \bf \dfrac{\left[\dfrac{1}{a + 1} + \dfrac{1}{c( \infty )} +. . . . . . . \right]}{\left(1 +  \dfrac{1}{ \infty }  \right)^{a - 1} \left[a+ \dfrac{(1 +1/ \infty )}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \dfrac{\left[\dfrac{1}{a + 1} + 0 +. . . . . . . \right]}{\left(1 +0 \right)^{a - 1} \left[a+ \dfrac{(1 +0)}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \dfrac{\left[\dfrac{1}{a + 1}\right]}{\left(1\right)^{a - 1} \left[a+ \dfrac{1}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf \dfrac{\left[\dfrac{1}{a + 1}\right]}{\left[a+ \dfrac{1}{2} \right]} =  \dfrac{1}{60}  \\

  \\ \implies \bf60\left[\dfrac{1}{a + 1}\right]= \left[a+ \dfrac{1}{2} \right]\\

  \\ \implies \bf\dfrac{60}{a + 1}= a+ \dfrac{1}{2}\\

  \\ \implies \bf\dfrac{60}{a + 1}= \dfrac{2a + 1}{2}\\

  \\ \implies \bf60 \times 2 = (2a + 1)(a + 1)\\

  \\ \implies \bf 2 {a}^{2} + 2a + a + 1= 120\\

  \\ \implies \bf 2 {a}^{2} +3a+ 1= 120\\

  \\ \implies \bf 2 {a}^{2} +3a - 119= 0\\

  \\ \implies \bf a =  \frac{ - 3 \pm \sqrt{ {(3)}^{2} - 4(2)( - 119)} }{2 \times 2} \\

  \\ \implies \bf a =  \dfrac{ - 3 \pm \sqrt{9 + 952} }{4} \\

  \\ \implies \bf a =  \dfrac{ - 3 \pm \sqrt{961} }{4} \\

  \\ \implies \bf a =  \dfrac{ - 3 \pm 31}{4} \\

  \\ \implies \bf a =  \dfrac{ - 3 +  31}{4} ,\dfrac{ - 3  - 31}{4}\\

  \\ \implies \bf a =  \dfrac{28}{4} ,\dfrac{ - 34}{4}\\

  \\ \implies\large{\boxed{\bf a =7, - \dfrac{17}{2}}}\\

Hence , The value of a = 7 ,-17/2.


BrainlyHero420: Awesome as always bro :)
BrainlyPopularman: Thanks
amansharma264: Awesome
Anonymous: αwєѕσmє
Anonymous: Amazing
BrainlyPopularman: Thank you ♡
QueenOfStars: Smart cookie! You always seem to go the extra mile! I acknowledge your self efforts that you put into answer questions...Keep up the good work brozki! :D
BrainlyPopularman: Thanks
iTzShInNy: Wow Excellent ans!! ♡♪
Anonymous: extraordinary
Similar questions