Math, asked by Anonymous, 3 months ago

Challenge for just fully qualified answerers not for others!

A square and a rectangular field with
measurements as given below have same perimeters. Which field has a larger areA?
• Side of square is given as 60 m
• Side of rectangle is given as 80 m

(If possible then please give diagrams too).

Note!

• I need 100% qualitied answer. Need fully explained answer. It is ok if you miss any one step!

Request!

• Moderators if "answers are qualitied and proper fully" then please verify them because it is easy to trust on them from my side. Please do that on answers.

Advanced thanks to all!!​

Answers

Answered by Muskanmeena35
3

Answer:

HOPE THIS ANSWER WILL HELP YOU!

Attachments:
Answered by XxHappiestWriterxX
25

___________________________

 \bf\huge\underline\red{Given}

 \bf \: Side  \: of  \: square = a = 60 m

 \bf \: Length  \: of  \: rectangle = L = 80m

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf\huge\underline\red{Let}

 \bf \: Breadth \:  of \:  rectangle = b \: m

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \huge \underline \pink{given }

Square and rectangle field have the same perimeter

 \bf \: Perimeter  \: of  \: rectangle = Perimeter  \: of  \: square

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf2(l + b) = 4a

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf2(80 + b) = 4 \times 60

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf160 + 2b = 240

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf2b = 240 - 160

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf2b = 80

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bf \: b  =  \frac{180}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  b = 40m

 \bf \: So, breadth  \: of  \: rectangle = 40 m

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \huge \underline \red{now}

 \huge \fbox \blue{area \: of \: sq.}

 \bf \: Area =  {a}^{2}

 \bf \: p utting \: a \:  = 60m

 \bf \: area \:  = ( {60})^{2}

 \bf = 60 \times 60 = 360 {m}^{2}

 \huge \fbox \blue{area \: of \: rect.}

 \bf \: Area = L × B

 \bf \: putting \: l \:  = 80 \: and \: b = 40

 \bf \: area \:  = 80 \times 40

 \bf =  3200 {m}^{2}

 \bf \huge \underline \pink{ \: sq. \: has \: larger \: area}

__________________________

Hope You Understand This Concept Mate :)

Attachments:
Similar questions