Math, asked by Anonymous, 5 days ago

#Challenge_math
Find the mistake in the below proof of 1 = 0.
\boxed{\begin{aligned} 1 & = \lim_{n\to \infty} 1\\&= \lim_{n\to \infty} \frac{n}{n}\\&=\lim_{n\to \infty} \bigg\{\underbrace{\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + ...+ \frac{1}{n} }_{\sf n\ terms}\bigg\}\\& = \underbrace{\lim_{n\to \infty} \frac1n + \lim_{n\to \infty} \frac 1 n + \lim_{n\to \infty} \frac 1n + ... + \lim_{n\to \infty} \frac 1n}_{\sf n \ terms} \\& =\underbrace{ 0 + 0+0+...+0}_\sf{n\ terms}\\&= 0\end{aligned}}

\bullet No spam else will be reported.
 \bullet Answer with enough explanation will be marked as brainliest.

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given proof for 0 = 1

\rm \: 1 =  \displaystyle\lim_{n\to \infty} 1

\rm \: = \displaystyle\lim_{n\to \infty} \frac{n}{n} \\

\\=\lim_{n\to \infty} \bigg\{\underbrace{\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + ...+ \frac{1}{n} }_{\sf n\ terms}\bigg\}\\ = \underbrace{\lim_{n\to \infty} \frac1n + \lim_{n\to \infty} \frac 1 n + \lim_{n\to \infty} \frac 1n + ... + \lim_{n\to \infty} \frac 1n}_{\sf n \ terms}  \\

\\ =\underbrace{ 0 + 0+0+...+0} \\ \sf{n\ terms}\\= 0

Now, the fallacy of this question is the very first step.

We know that,

\rm \: \displaystyle\sum_{k=1}^{n}  \: 1 \:  =  \: n \\

So,

\rm \: \displaystyle\lim_{n\to \infty}\displaystyle\sum_{k=1}^{n}  \: 1 \: \ne \: n \:  \\

So, the following step is invalid

As n is infinite, we can't take as finite number of terms.

\\=\lim_{n\to \infty} \bigg\{\underbrace{\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + ...+ \frac{1}{n} }_{\sf n\ terms}\bigg\}\\ = \underbrace{\lim_{n\to \infty} \frac1n + \lim_{n\to \infty} \frac 1 n + \lim_{n\to \infty} \frac 1n + ... + \lim_{n\to \infty} \frac 1n}_{\sf n \ terms}  \\

Hence, the above result is not valid.

\rm\implies \:0 \:  \ne \: 1 \\

\rule{190pt}{2pt}

Additional Information :-

Some important summations :-

\boxed{\rm{  \:\displaystyle\sum_{k=1}^{n} k \:  =  \:  \frac{n(n + 1)}{2}  \: }} \\

\boxed{\rm{  \:\displaystyle\sum_{k=1}^{n}  {k}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6}  \: }} \\

\boxed{\rm{  \:\displaystyle\sum_{k=1}^{n}  {k}^{3}  \:  =  \:  \bigg[\frac{n(n + 1)}{2}\bigg]^{2}   \: }} \\

Similar questions