Math, asked by Anonymous, 6 months ago

#challenge_question_for_math_lover

   \rm{ \displaystyle \lim   _{ \rm \: x \to1} \frac{   \int_{0} ^{(  \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) \sin(x - 1)} }
Find the value ​

Answers

Answered by Asterinn
20

 \implies\rm{ \displaystyle\lim _{ \rm x \to1} \dfrac{\displaystyle \int_{0}^{( \rm x - 1) ^{2}  } \rm t \cos tdt}{ \rm(x - 1) \sin(x - 1)} }

Now if we put x = 1 then we will get 0/0 form.

So , we will apply L' Hospital rule and differentiate both numerator and denominator seperately.

 \implies\rm{ \displaystyle\lim _{ \rm x \to1} \dfrac{ \dfrac{d \bigg( \displaystyle \int_{0}^{( \rm x - 1) ^{2}  } \rm t \cos tdt \bigg)}{dx} }{  \frac{d \bigg(\rm(x - 1) \sin(x - 1)\bigg )}{dx} } }

Now to differentiate the integral function we will apply Leibnitz rule. [To understand Leibnitz refer attachment. ]

  \rm\implies{ \displaystyle\lim _{ \rm x \to1} \dfrac{  \rm{(x - 1)}^{2} \:  \times cos(x - 1)^{2} \times  \dfrac{d (x - 1)^{2}}{dx} }{ \rm(x - 1) cos(x - 1) + sin(x - 1)}  }

\rm\implies{ \displaystyle\lim _{ \rm x \to1} \dfrac{ 2 \rm{(x - 1)}^{2} \:  \times cos(x - 1)^{2} \times {(x - 1)}}{ \rm(x - 1) cos(x - 1) + sin(x - 1)} }

\rm\implies{ \displaystyle\lim _{ \rm x \to1} \dfrac{  2\rm{(x - 1)}^{3} \:  \times cos(x - 1)^{2} }{ \rm(x - 1) cos(x - 1) + sin(x - 1)} }

Now again if we put x = 1 in the above expression, then we will get 0/0 form.

So , now we will further simplify the above expression by dividing (x-1) from numerator and denominator.

\rm\implies{ \displaystyle\lim _{ \rm x \to1} \dfrac{ 2 \bigg [\rm{(x - 1)}^{3} \:  \times cos(x - 1)^{2} \bigg]  \bigg/(x - 1)}{\bigg [ \rm(x - 1) cos(x - 1) + sin(x - 1)\bigg] \bigg/(x - 1)} }

\rm\implies{ \displaystyle\lim _{ \rm x \to1} \dfrac{  2\rm{(x - 1)}^{2} \:  \times cos(x - 1)^{2} }{ \rm cos(x - 1) +  \dfrac{sin(x - 1)}{(x - 1)} } }

Now put x = 1

\rm\implies{\dfrac{  2\rm{(1 - 1)}^{2} \:  \times cos(1 - 1)^{2} }{ \rm cos(1- 1) +  1 } } =  \dfrac{2 \times 0 \times 1}{1 + 1}

\rm\implies  \dfrac{2 \times 0 \times 1}{1 + 1}  =  \dfrac{0}{2}

\rm\implies    \dfrac{0}{2}  = 0

Answer : 0

Attachments:
Answered by TheRose06
1

\huge\underline{\bf \orange{Aηsωeя :}}

Hope it helps...

Attachments:
Similar questions