Math, asked by Jafar2007, 7 hours ago

∆Challenge To ALL"BRAINLY STARS"

Attachments:

Answers

Answered by user0888
10

\huge\purple{\underline{\text{1st question}}}

From the polynomial identity:-

\large\boxed{(a+b)^3=a^3+3a^2b+3ab^2+b^3}

One can derive:-

\rightarrow\left(x+\dfrac{1}{x}\right)^3=x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}

Since we know that:-

\rightarrow x^3+\dfrac{1}{x^3}=110

Let us assume that:-

\rightarrow t=x+\dfrac{1}{x}\ \cdots(1)

Then

\rightarrow t^3=x^3+3(x+\dfrac{1}{x})+\dfrac{1}{x^3}\ \therefore t^3=110+3t\ \cdots(2)

\iff\red{\underline{t^3-3t-110=0}}

By substituting t=5 on the equation,

\rightarrow 125-15-110=0

Now we know that it has t-5 as a factor.

\rightarrow\red{\underline{(t-5)(t^2+5t+22)=0}}\ \therefore t=5\text{ or }t^2+5t+22=0

(I am considering imaginary solutions too.)

We know that:-

\large\boxed{(a+b)^{2}=a^2+2ab+b^2}

For t=5:-

\rightarrow\left(x+\dfrac{1}{x}\right)^2=x^2+2+\dfrac{1}{x^2}

\rightarrow25=x^2+2+\dfrac{1}{x^2}\ \therefore x^2+\dfrac{1}{x^2}=23

\rightarrow\left(x^2+\dfrac{1}{x^2}\right)^2=x^4+2+\dfrac{1}{x^4}

\rightarrow 529=x^4+2+\dfrac{1}{x^4}\ \therefore \red{\underline{x^4+\dfrac{1}{x^4}=527}\tiny{\text{//}}}

For t^2+5t+22=0:-

\rightarrow t^2=-5t-22\ \cdots(3)

\rightarrow x^2+2+\dfrac{1}{x^2}=-5t-22

\rightarrow x^2+\dfrac{1}{x^2}=-5t-24

\rightarrow \left(x^2+\dfrac{1}{x^2}\right)^2=(-5t-24)^2

\rightarrow x^4+2+\dfrac{1}{x^4}=25t^2+240t+576

By substituting (3):-

\rightarrow x^4+\dfrac{1}{x^4}=25(-5t-22)+240t+574

\rightarrow x^4+\dfrac{1}{x^4}=-125t-550+240t+574

\rightarrow x^4+\dfrac{1}{x^4}=115t+24

Solutions of t^2+5t+22=0 are t=\dfrac{-5\pm3\sqrt{7}i}{2}.

\therefore x^4+\dfrac{1}{x^4}=\red{\underline{\dfrac{-527\pm345\sqrt{7}i}{2}}\tiny{\text{//}}}

\huge\purple{\underline{\text{2nd Question}}}

Given that:-

\rightarrow\begin{cases} & x=(25+10\sqrt{6})^\frac{1}{2} \\  & y=(25-10\sqrt{6})^\frac{1}{2} \end{cases}

Then

\rightarrow\begin{cases} & x^2=25+10\sqrt{6} \\  & xy=5 \\  & y^2=25-10\sqrt{6} \end{cases}

Thus

\rightarrow x^2+2xy+y^2=60\ \therefore \red{\underline{x+y=2\sqrt{15}}\tiny{\text{//}}}\text{ as }x>0\text{ and }y>0

\huge\purple{\underline{\text{3rd question}}}

Given:-

\rightarrow\dfrac{\sqrt{1+x}}{1+\sqrt{1+x}}+\dfrac{\sqrt{1-x}}{1-\sqrt{1-x}}

Let us suppose:-

\rightarrow\begin{cases} & A=\sqrt{1+x} \\  & B=\sqrt{1-x} \end{cases}

Then

\rightarrow\begin{cases} & A^2=1+x \\  & AB=\sqrt{1-x^2} \\  & B^2=1-x \end{cases}

Thus

\rightarrow A^2+2AB+B^2=2+2\sqrt{1-x^{2}}

\rightarrow A^2-2AB+B^2=2-2\sqrt{1-x^{2}}

Substituting the given value, x=\dfrac{\sqrt{3}}{2}:-

\rightarrow (A+B)^2=2+1=3\ \therefore\underline{A+B=\sqrt{3}}

\rightarrow(A-B)^2=2-1=1\ \therefore\underline{A-B=1}

\rightarrow AB=\sqrt{1-\dfrac{3}{4}}=\dfrac{1}{2}

Given:-

\rightarrow\dfrac{A}{1+A}+\dfrac{B}{1-B}

=\dfrac{A-AB+B+AB}{1-B+A-AB}

=\dfrac{A+B}{1+A-B-AB}

By substitution:-

\rightarrow\dfrac{(A+B)}{1+(A-B)-AB}

=\dfrac{\sqrt{3}}{1+1-\dfrac{1}{2}}

=\dfrac{\sqrt{3}}{\dfrac{3}{2}}

=\dfrac{2}{\sqrt{3}}

=\red{\underline{\dfrac{2\sqrt{3}}{3}}\tiny\text{//}}

\huge\purple{\underline{\text{4th question}}}

Given equation:-

\rightarrow4^x-4^{x-1}=24

As we know that the subtraction of exponents result in the division

\rightarrow4^x-\dfrac{4^x}{4}=24

\iff4^{x}\times(1-\dfrac{1}{4})=24

\iff4^x=24\times\dfrac{4}{3}

\iff4^x=32

Hence

\rightarrow2^{2x}=2^5

\iff 2x=5\ \therefore x=\dfrac{5}{2}

Hence

\rightarrow(2x)^x=5^{\frac{5}{2}}\ \red{\underline{\therefore(2x)^x=25\sqrt{5}}\tiny{\text{//}}}

\huge\purple{\underline{\text{5th question}}}

Given equation:-

\rightarrow x=\dfrac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}

By componendo-dividendo

\rightarrow\dfrac{x+1}{x-1}=\sqrt{\dfrac{p+2q}{p-2q}}

Squaring both sides

\rightarrow\left(\dfrac{x+1}{x-1}\right)^2=\dfrac{p+2q}{p-2q}

\iff\dfrac{x^2+2x+1}{x^2-2x+1}=\dfrac{p+2q}{p-2q}

\iff(x^2+2x+1)(p-2q)=(x^2-2x+1)(p+2q)

\iff px^2+2px+p-2qx^2-4qx-2q=px^2-2px+p+2qx^2-4qx+2q

\iff(p-2q)x^2-(p+2q)x^2+(2p-4q)x-(-2p-4q)x+(p-2q)-(p+2q)=0

\iff-4qx^2+4px-4q=0\ \therefore \red{\underline{qx^2-px+q=0}\tiny{\text{//}}}

Similar questions