Math, asked by priyanshu7777, 1 year ago

Challenger question for maths genius!
It is easy too but for me hard only a little ,need oF understanding

Please solve (iii) part

Attachments:

Answers

Answered by Anonymous
4

Answer \:  \\  \\ Given \:  \\   \alpha  \:  \:  \: and \:  \:  \:  \beta  \:  \: are \: the \: zeros \: of \:  \: x {}^{2}  - x - 2 \:  \:  \\  \\  \alpha  +  \beta  =  \frac{ - ( -1 )}{1}  \:  \:  \: and \:  \:  \:  \alpha  \beta  =  \frac{ - 2}{1}  \\  \\  \alpha  +  \beta  = 1 \:  \:  \: and \:  \:  \:  \alpha  \beta  =  - 2 \\  \\ let \: the \: required \: quadratic \: polynomial \: be \:  \: p(x) \\  \\ p(x) = x {}^{2}  - ( \frac{ \alpha  {}^{2} }{ \beta  {}^{2} }  +  \frac{ \beta  {}^{2} }{ \alpha  {}^{2} } )x + ( \frac{ \alpha  {}^{2} }{ \beta  {}^{2} }  \times  \frac{ \beta  {}^{2} }{ \alpha  {}^{2} } ) \\  \\ p(x) = x {}^{2}  - ( \frac{ \alpha  {}^{2} }{ \beta  {}^{2} }  +   \frac{ \beta  {}^{2} }{ \alpha  {}^{2} } ) x+ 1 \\  \\ p(x) = x {}^{2}  -  (  \frac{ \alpha  {}^{4}  +  \beta  {}^{4} }{ \alpha  {}^{2}  \beta  {}^{2} } )x + 1 \\  \\ Now \:  \:  \:  \\  \\  \alpha  {}^{4}  +  \beta  {}^{4}  = (( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta ) {}^{2}  - 2( \alpha  \beta ) {}^{2}  \\  \\  \alpha  {}^{4}  +  \beta  {}^{4}  = ((1) {}^{2}  - 2( - 2)) {}^{2}  - 2( - 2) {}^{2}  \\  \\  \alpha  {}^{4}  +  \beta  {}^{4}  = (1 + 4) {}^{2}  -   8 \\  \\  \alpha  {}^{4}  +  \beta  {}^{4}  = 25 - 8 \\  \\  \alpha  {}^{4}  +  \beta  {}^{4}  = 17 \\  \\ and \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \alpha  \beta ) {}^{2}  = ( - 2) {}^{2}  = 4 \\  \\ so \: the \: required \: quadratic \: polynomial \: is \:  \\  \\ p(x) = x {}^{2}  - ( \frac{17}{4} )x + 1 \\  \\ p(x) = (4x {}^{2}  - 17x + 4) \frac{1}{4}  \\  \\ and \: the \: required \: quadratic \: equation \: is \\  \\ 4x {}^{2}  - 17x + 4 = 0


priyanshu7777: Thanks dear
Anonymous: it's ok!-)
priyanshu7777: can you solve one more
priyanshu7777: I am asking a new question
Anonymous: okay!-)
Similar questions