Math, asked by upasana7171819, 11 months ago

change.in a+ib ( 1/1-2i + 3/1+i )( 3+4i/2-4i)​

Attachments:

Answers

Answered by brunoconti
5

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
53

 \tt Let's \: z =  \bigg( \frac{1}{1 - 2i} +  \frac{3}{1 + i}  \bigg)\bigg( \frac{3 + 4i}{2 - 4i}\bigg) \\  \\  \tt \implies\bigg( \frac{(1 + i) + 3(1 - 2i)}{(1 - 2i)(1 + i)} \bigg)\bigg( \frac{3 + 4i}{2 - 4i} \bigg) \\  \\  \tt \implies\bigg( \frac{1 + i + 3 - 6i}{1 + i - 2i -  {2i}^{2} }\bigg)\bigg( \frac{3 + 4i}{2 - 4i} \bigg) \\  \\  \tt \implies \frac{1 + i + 3 - 6i}{(1 + 2) + i( - 2 + 1)}  \times  \frac{3 + 4i}{2 - 4i}\\  \\  \tt \implies \frac{4 - 5i}{3 -i}  \times  \frac{3 + 4i}{2 - 4i}  \\  \\   \tt \implies \frac{12 + 16i - 15i - 20 {i}^{2} }{6 - 12i - 2i + 4 {i}^{2} }

 \tt \implies \frac{12 + 20 + i}{6 - 4 - 14i}  \\  \\  \tt \implies \frac{32 + i}{2 - 14i}  \\  \\  \tt \implies \frac{32 + i}{2 - 14i}  \times  \frac{2 + 14i}{2 + 14i}  \\  \\  \tt \implies \frac{64 + 448i + 2i + 14 {i}^{2} }{4 - 196 {i}^{2} }  \\  \\  \tt \implies \frac{64 - 14 + 450i}{4 + 196} \\  \\  \tt \implies \frac{50 + 450i}{200}  \\  \\ \large \boxed{\tt \green{\frac{1}{4} +  \frac{9}{4}i}}

Similar questions