Math, asked by Steph0303, 6 months ago

Chapter: Differential Equations Please solve using all the necessary steps.

Attachments:

Answers

Answered by AdorableMe
77

Given equation :-

\displaystyle \sf{x=1+xy\frac{dy}{dx} +\frac{x^2y^2}{2!}\bigg(\frac{dy}{dx}  \bigg)^2 +\frac{x^3y^3}{3!}\bigg(\frac{dy}{dx}  \bigg)^3...}

To Find :-

The solution of the given differential equation.

Solution :-

We know from maclaurin series expansion for powers of e :-

\boxed{\bf{e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...  }}\:\:\:\:\cdots \sf{(i)}

Comparing equation (i) with the given equation, we get :

\sf{x=e^{xy\frac{dy}{dx} }}

\sf{\longrightarrow log_ex=xy\dfrac{dy}{dx} }

\sf{\longrightarrow ydy=\dfrac{log_e x}{x} dx}

Integrating both the sides :-

\displaystyle\sf{\longrightarrow \int ydy=\int\frac{log_ex}{x}dx }

\sf{\longrightarrow \dfrac{y^2}{2}= \dfrac{(log_ex)^2}{2}+C }

\sf{\longrightarrow y^2=(log_ex)^2+C}

\sf{\longrightarrow y=\pm\sqrt{(log_ex)^2}+C }

\sf{\longrightarrow y=\pm log_ex^2+C}

◘ For provided options, the required answer is :-

B. y² = (log x)² + c

Hope this helps :))))

Answered by shadowsabers03
55

Given,

\displaystyle\longrightarrow x=1+xy\cdot\dfrac{dy}{dx}+\dfrac{x^2y^2}{2!}\left(\dfrac{dy}{dx}\right)^2+\dfrac{x^3y^3}{3!}\left(\dfrac{dy}{dx}\right)^3+\,\dots

Or,

\displaystyle\longrightarrow x=\sum_{k=0}^{\infty}\dfrac{x^ky^k}{k!}\left(\dfrac{dy}{dx}\right)^k

\displaystyle\longrightarrow x=\sum_{k=0}^{\infty}\dfrac{\left(xy\cdot\dfrac{dy}{dx}\right)^k}{k!}\quad\quad\dots(1)

But we know that,

\displaystyle\longrightarrow e^x=\sum_{k=0}^{\infty}\dfrac{x^k}{k!}

Thus (1) becomes,

\displaystyle\longrightarrow x=e^{xy\cdot\frac{dy}{dx}}

Taking log,

\displaystyle\longrightarrow\log x=xy\cdot\dfrac{dy}{dx}

\displaystyle\longrightarrow y\ dy=\dfrac{1}{x}\,\log x\ dx

Now integrating,

\displaystyle\longrightarrow\int y\ dy=\int\dfrac{1}{x}\,\log x\ dx

Integrating RHS by parts,

\displaystyle\longrightarrow\dfrac{y^2}{2}=\log x\cdot\log x-\int\dfrac{1}{x}\,\log x\ dx+C

\displaystyle\longrightarrow\dfrac{y^2}{2}=(\log x)^2-\int y\ dy+C

\displaystyle\longrightarrow\dfrac{y^2}{2}=(\log x)^2-\dfrac{y^2}{2}+C

\displaystyle\longrightarrow\underline{\underline{y^2=(\log x)^2+C}}

Hence (B) is the answer.

Similar questions