Math, asked by Swarup1998, 1 year ago

Chapter - Laws of Indices

If x=(\sqrt{2}-1)^{\frac{1}{3}} , then prove that

(x-\frac{1}{x})^{3}+3(x-\frac{1}{x})+2=0

Answers

Answered by tahseen619
6

x=(\sqrt{2}-1)^{\frac{1}{3}}
(x-\frac{1}{x})^{3}+3(x-\frac{1}{x})+2\\  {x}^{3}  -  \frac{1}{ {x}^{3} }  + 2 \\  {(\sqrt{2}-1)^{\frac{1}{3} \times 3}}^{}  -  \frac{1}{ (\sqrt{2}-1)^{\frac{1}{3} \times 3}}  + 2 \\    \sqrt{2}  - 1 -  \frac{1}{ \sqrt{2}  - 1}  + 2  \\ \frac{ {( \sqrt{2}  - 1)}^{2} - 1 }{ \sqrt{2}  - 1}  + 2 \\  \frac{2  - 2 \sqrt{2}  + 1 - 1 + 2 \sqrt{2}  - 2}{ \sqrt{2}  - 1}  =  \frac{0}{ \sqrt{2} - 1 }  = 0
Answered by XxItsDivYanShuxX
6

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Question:↓}}}}}}}

If x=(\sqrt{2}-1)^{\frac{1}{3}} , then prove that

(x-\frac{1}{x})^{3}+3(x-\frac{1}{x})+2=0

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Solution:↓}}}}}}}

x=(\sqrt{2}-1)^{\frac{1}{3}}x

\begin{gathered}(x-\frac{1}{x})^{3}+3(x-\frac{1}{x})+2\\ {x}^{3} - \frac{1}{ {x}^{3} } + 2 \\ {(\sqrt{2}-1)^{\frac{1}{3} \times 3}}^{} - \frac{1}{ (\sqrt{2}-1)^{\frac{1}{3} \times 3}} + 2 \\ \sqrt{2} - 1 - \frac{1}{ \sqrt{2} - 1} + 2 \\ \frac{ {( \sqrt{2} - 1)}^{2} - 1 }{ \sqrt{2} - 1} + 2 \\ \frac{2 - 2 \sqrt{2} + 1 - 1 + 2 \sqrt{2} - 2}{ \sqrt{2} - 1} = \frac{0}{ \sqrt{2} - 1 } = 0\end{gathered}

Hope it helps you.

Similar questions
Math, 7 months ago