Physics, asked by Anonymous, 8 months ago

Chapter :- Light !!

Explanation Needed :)

#No spams
#No copied answers ​

Attachments:

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
28

\huge\sf\pink{Answer}

☞ Refractive index of second medium is √2

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ sin C = 30°

✭ sin R = 90°

✭ Refractive index of medium 1 is 2√2

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Refractive Index of medium 2?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

So here we may use Shell's Law, that is,

\underline{\boxed{\sf sin \ C \times R_1 = sin \ R \times R_2}}

  • sin C = sin (Critical angle) = 30°
  • sin R = sin (Reflected angle) = 90°
  • R¹ = 2√2

Substituting the given values,

\sf sin \ C \times R_1 = sin \ R \times R_2

\sf sin \ 30^{\circ} \times 2\sqrt{2} = sin \ 90^{\circ} \times R_2

\sf \dfrac{1}{2} \times 2\sqrt{2} = 1 \times R_2

\sf \orange{R_2 = \sqrt{2}}

━━━━━━━━

\sf \underline{\sf Know \ More}

»» Refraction is the bending of light from one medium to another

»» When a ray of light travels from a medium of less density to a medium of higher density it bends towards the normal

»» When a ray of light travels from a medium of higher density to a medium of lower density it bends away from the normal

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

\large{\underline{\sf Given:-}}

  • sin C = 30°
  • sin R = 90°
  • Refractive index of 1st medium =  2\sqrt{2}

\large{\underline{\sf Find:-}}

  • Refractive index of 2nd medium

\large{\underline{\sf Solution:-}}

we, know that

\huge\underline{\boxed{ \sf n_{1} \times \sin C =n_{2} \times \sin R }}

where,

  • \sf n_1 = 2\sqrt{2}
  • \sf \sin C = {30}^{\circ}
  • \sf \sin R = {90}^{\circ}

So,

\dashrightarrow\sf n_{1} \times \sin C =n_{2} \times \sin R \\  \\

\dashrightarrow\sf 2 \sqrt{2}  \times \sin {30}^{\circ}=n_{2} \times \sin {30}^{\circ}\\  \\

we, know

  \boxed{\begin{lgathered} \sin {30}^{ \circ}  =  \dfrac{1}{2} \\  \sin {90}^{ \circ} = 1\end{lgathered}}

So,

\dashrightarrow\sf 2 \sqrt{2}  \times  \dfrac{1}{2} =n_{2} \times  1\\  \\

\dashrightarrow\sf \sqrt{2}  \times 1 =n_{2}\\  \\

\dashrightarrow\sf \sqrt{2}=n_{2}\\  \\

 \huge{\therefore \pink{\sf n_{2} =\sqrt{2}}} \\  \\

_________________________

Hence, Refractive Index of second 2nd medium =  2\sqrt{2}

Similar questions