Physics, asked by Anonymous, 1 month ago

Charges +q and –q are placed at points A and B
respectively which are a distance 2L apart, C is
the midpoint between A and B. The work done in
moving a charge +Q along the semicircle CRD is​

Attachments:

Answers

Answered by NewGeneEinstein
13

Potential at D:-

\\ \sf\longmapsto V_D=\dfrac{Kq}{3\ell}+\dfrac{K(-q)}{\ell}

\\ \sf\longmapsto V_D=\dfrac{Kq}{3\ell}-\dfrac{Kq}{\ell}

\\ \sf\longmapsto V_D=\dfrac{Kq-3Kq}{3\ell}

\\ \bf\longmapsto V_D=\dfrac{-2Kq}{3\ell}

Potential at C:-

\\ \sf\longmapsto V_C=\dfrac{Kq}{\ell}+\dfrac{K(-q)}{\ell}

\\ \sf\longmapsto V_C=\dfrac{Kq}{\ell}-\dfrac{Kq}{\ell}

\\ \bf\longmapsto V_C=0

We know that

\\ \sf\longmapsto V_D-V_C=\dfrac{W_{C-D}}{Q}

\\ \bf\longmapsto W_{C-D}=(V_D-V_C)Q

\\ \sf\longmapsto W_{C-D}=\dfrac{-2Kq}{3\ell}Q

As

\boxed{\sf K=\dfrac{1}{4\pi \epsilon_0}}

\\ \sf\longmapsto W_{C-D}=\dfrac{\cancel{-2}q}{3\times \cancel{4}\pi\epsilon_0}\times \dfrac{Q}{L}

\\ \sf\longmapsto \underline{\boxed{\bf{W_{C-D}=\dfrac{-qQ}{6\pi\epsilon_0L}}}}

Answered by SparklingBoy
13

\large \bf \clubs \:  Given  :-

  • Charges +q and –q are placed at points A and B respectively.

  • Distance Between A & B = 2L and C is the mid point of line joining A and B.

  • CRD is Senicircle ( Raidus = L )

-----------------------

\large \bf \clubs \:   To \:  Find :-

  • Work Done in moving a charge + Q Along the Semi-Circle CRD

-----------------------

\large \bf \clubs \:   Main  \:  Concept

  • Work Done in moving any charge is independent of the path followed .

  • Relation Between Potential of two points and Work Done from moving a charge Q from one point to another point : \sf V_Y-V_X=\dfrac{W_{X \rightarrow Y}}{Q}

-----------------------

\large \bf \clubs \:   Solution  :-

Calculating Potential at C :-)

 \sf V_C = \bigg(  \dfrac{kq}{L}  \bigg) +  \bigg( \dfrac{k( - q)}{L}  \bigg) \\  \\  =   \sf \cancel\dfrac{kq}{L}   -  \cancel \dfrac{kq}{L}  \\  \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf V_C = 0} }}}

Calculating Potential at D :-)

\sf V_D= \bigg(  \dfrac{kq}{3L}  \bigg) +  \bigg( \dfrac{k( - q)}{L}  \bigg) \\  \\  =   \sf \dfrac{kq}{3L}  -    \dfrac{kq}{L}  \\  \\  \sf =   \dfrac{kq - 3kq}{3L}   \\  \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf V_D =   - \frac{2kq}{3L} } }}}

Now ,

 \sf\dfrac{W_{C \rightarrow D}}{Q} = V_D - V_C \\  \\  \sf =  -  \dfrac{2kq}{3L}  - 0 \\  \\  =  -   \sf\dfrac{2kq}{3L} \\  \\ :\longmapsto\sf {W_{C \rightarrow D}} =   - \frac{2kqQ}{3L}

 \bf Putting \:  k =  \dfrac{1}{4\pi \epsilon_{\circ}} :  -  \\  \\ \sf {W_{C \rightarrow D}} =   - \frac{2qQ}{3L} \times \dfrac{1}{4\pi \epsilon_{\circ}} \\  \\  \purple{ \Large :\longmapsto  \underline {\boxed{{\bf  {W_{C \rightarrow D}} =   - \frac{qQ}{6L\pi \epsilon_{\circ}}} }}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Attachments:
Similar questions