Math, asked by anupamasood1234, 5 months ago

check a-8/3=7-4a/7 in which a=77/19​

Answers

Answered by Anonymous
1

 \sf{Given:- } \\   {a= \frac{77}{19} }

 \large \sf \bf{a -  \frac{8}{3} = 7 -  \frac{4a}{7}  }

Put the value of a;

 \frac{77}{19}  -  \frac{8}{3}  =  7 -  \frac{4 \times  \frac{77}{19} }{7}

______________________

 \sf{first  \: let's  \: solve  \: this:-} \\  \boxed{  \frac{4 \times  \frac{77}{19} }{7}   }

 \sf = > 4 \times  \frac{11}{19}  =  \frac{44}{19}

______________________

 \sf =  >  \frac{77}{19}  -  \frac{8}{3}  =  \frac{7}{1}  -  \frac{44}{19}

Solve it by taking it L.H.S. and R.H.S.

L.H.S.

 \sf =  >  \frac{77}{19}  -  \frac{8}{3}

L.C.M. of 19 and 3=3×19=57

 =  >  \frac{77}{19}  \times  \frac{3}{3}  =  \frac{231}{57}

 =  >  \frac{8}{3}  \times  \frac{19}{19}  =  \frac{152}{57}

 =  >  \frac{231 - 152}{57}  =  \frac{79}{57}

R.H.S.

 =  >  \frac{7}{1}  -  \frac{44}{19}

Take L.C.M. of 1 and 19=19

 =  >  \frac{7}{1}  \times  \frac{19}{19}  =  \frac{133}{19}

 =  >  \frac{44}{19}  \times  \frac{1}{1}  =  \frac{44}{19}

 =  >  \frac{133 - 44}{19}  =  \frac{89}{19}

 \frac{79}{57}  \not =  \frac{89}{19}

L.H.S. is not equals to R.H.S.

 \sf{so, \: a -  \frac{8}{3} \not = 7 -  \frac{4a}{7}  }

{\large { \color{aqua} {\boxed{ \color{pink}{\sf {❥Hope \:  it \:  helps \:  you....}}}}}}

Similar questions