Math, asked by rabiapraween20125, 3 months ago

check if x= 1 solution of following equation( a) 10x + 2 = 13​

Answers

Answered by grithachinnu86
0

Answer:

 (i) (x + 1)2 = 2(x – 3)

(ii) x2 – 2x = (–2)(3 – x)

        (iii) (x – 2)(x + 1) = (x – 1)(x + 3)

(iv) (x – 3)(2x + 1) = x(x + 5)

        (v) (2x – 1) (x – 3) – (x + 5) (x – 1)

(vi) x2 + 3x +1 = (x – 2)2

        (vii) (x + 2)3 = 2x(x2 – 1)

(viii) x3 – 4x2 – × + 1 = (x – 2)3

Sol. (i) (x + 1)2 = 2(x – 3)

              We have:

              (x + 1)2 = 2 (x – 3) x2 + 2x + 1 = 2x – 6

              ⇒ x2 + 2x + 1 – 2x + 6 = 0

              ⇒ x2 + 70

              Since x2 + 7 is a quadratic polynomial

              ∴ (x + 1)2 = 2(x – 3) is a quadratic equation.

         (ii) x2– 2x = (–2) (3 – x)

               We have:

               x2 – 2x = (– 2) (3 – x)

               ⇒ x2 – 2x = –6 + 2x

               ⇒ x2 – 2x – 2x + 6 = 0

               ⇒ x2 – 4x + 6 = 0

               Since x2 – 4x + 6 is a quadratic polynomial

               ∴ x2 – 2x = (–2) (3 – x) is a quadratic equation.

         (iii) (x – 2) (x + 1) = (x – 1) (x + 3)

                 We have:

                 (x – 2) (x + 1) = (x – 1) (x + 3)

                 ⇒ x2 – x – 2 = x2 + 2x – 3

                 ⇒ x2 – x – 2 – x2 – 2x + 3 = 0

                 ⇒ –3x + 1 = 0

                 Since –3x + 1 is a linear polynomial

                 ∴ (x – 2) (x + 1) = (x – 1) (x + 3) is not quadratic equation.

         (iv) (x – 3) (2x + 1) = x(x + 5)

                 We have:

                 (x – 3) (2x + 1) = x(x + 5)

                 ⇒ 2x2 + x – 6x – 3 = x2 + 5x

                 ⇒ 2x2 – 5x – 3 – x2 – 5x – 0

                 ⇒ x2 + 10x – 3 = 0

                 Since x2 + 10x – 3 is a quadratic polynomial

                 ∴ (x – 3) (2x + 1) = x(x + 5) is a quadratic equation.

         (v) (2x – 1) (x – 3) = (x + 5) (x – 1)

                 We have:

                 (2x – 1) (x – 3) = (x + 5) (x – 1)

                 ⇒ 2x2 – 6x – x + 3 = x2 – x + 5x – 5

                 ⇒ 2x2 – x2 – 6x – x + x – 5x + 3 + 5 = 0

                 ⇒ x2 – 11x + 8 = 0

                 Since x2 – 11x + 8 is a quadratic polynomial

                 ∴ (2x – 1) (x – 3) = (x + 5) (x – 1) is a quadratic equation.

         (vi) x2 + 3x + 1 = (x – 2)2

                 We have:

                 x2 + 3x + 1 = (x – 2)2

                 ⇒ x2 + 3x + 1 = x2 – 4x + 4

                 ⇒ x2 + 3x + 1 – x2 + 4x – 4 =0

                 ⇒ 7x – 3 = 0

                 Since 7x – 3 is a linear polynomial.

                 ∴ x2 + 3x + 1 = (x – 2)2 is not a quadratic equation.

         (vii) (x + 2)3 = 2x(x2 – 1)

                  We have:

                  (x + 2)3 = 2x(x2 – 1)

                  x3 + 3x2(2) + 3x(2)2 + (2)3 = 2x3 – 2x

                  ⇒ x3 + 6x2 + 12x + 8 = 2x3 – 2x

                  ⇒ x3 + 6x2 + 12x + 8 – 2x3 + 2x = 0

                  ⇒ –x3 + 6x2 + 14x + 8 = 0

                  Since –x3 + 6x2 + 14x + 8 is a polynomial of degree 3

                  ∴ (x + 2)3 = 2x(x2 – 1) is not a quadratic equation.

         (viii) x3 – 4x2 – x + 1 = (x – 2)3

                   We have:

                   x3 – 4x2 – x + 1 = (x – 2)3

                   ⇒ x3 – 4x2 – x + 1 = x3 + 3x2(– 2) + 3x(– 2)2 + (– 2)3

                   ⇒ x3 – 4x2 – x + 1 = x3 – 6x2 + 12x – 8

                   ⇒ x3 – 4x2 – x – 1 – x3 + 6x2 – 12x + 8 = 0

                   2x2 – 13x + 9 = 0

                   Since 2x2 – 13x + 9 is a quadratic polynomial

                   ∴ x3 – 4x2 – x + 1 = (x – 2)3 is a quadratic equation.

Answered by gg7838363
2

Step-by-step explanation:

let's check it by trial and error method

10x + 2 = 13

L.H.S. 10x +2

let's take x = 1

10*1+2

10+2

12

R.H.S. 13

12 is not equal to 13

L.H.S. NOT EQUAL TO R.H.S.

NOT POSSIBLE

LET'S TAKE X=2

L.H.S. 10*2+2

20+2

22

R.H.S. 13

22 IS NOT EQUAL TO 13

L.H.S. IS NOT EQUAL TO R.H.S.

NOT POSSIBLE

hence x=1 and x = 2 is not the solution to the following equation

Similar questions