Math, asked by Gagan022, 1 year ago

check out the attachment​

Attachments:

Answers

Answered by Anonymous
181

\bold{\huge{\underline{\underline{\sf{AnsWer:}}}}}

Value of p = 12

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • \alpha and \beta are the roots of the equation.

Equation :

  • - 8x + p = 0
  • + = 40

To FiNd :

  • Value of p

SoLuTioN :

\alpha and \beta are the roots of the equation

Compare the given equation with the general quadratic form :

  • ax² + bx + c = 0

  1. a = 1
  2. b = - 8
  3. c = p

Sum of roots :

\hookrightarrow \alpha + \beta = \sf{\dfrac{-b}{a}}

\hookrightarrow \alpha + \beta = \sf{\dfrac{-(-8)}{1}}

\hookrightarrow \alpha + \beta = \sf{\dfrac{8}{1}}

\hookrightarrow \alpha + \beta = \sf{8} ---> (1)

Product of roots :

\hookrightarrow \alpha\:\beta = \sf{\dfrac{c}{a}}

\hookrightarrow \alpha\:\beta = \sf{\dfrac{p}{1}}

\hookrightarrow \alpha\:\beta = \sf{p} ---> (2)

\sf{\underline{Squaring\:both\:sides\:of\:eq^n\:1}}

\hookrightarrow \sf{\alpha^2\:+\:\beta^2\:=\:8^2}

\hookrightarrow \sf{(\alpha\:+\:\beta)^2\:=\:8^2}

\hookrightarrow \sf{\alpha^2\:+\:2\:\alpha\:\beta\:+\:\beta^2\:=\:64}

\hookrightarrow \sf{\alpha^2\:+\:2\:p\:+\:\beta^2\:=\:64}

\sf{\because{\:\alpha\:\beta\:=\:p\:\:from\:eq^n\:2}}

\hookrightarrow \sf{\alpha^2\:+\:\beta^2\:=\:64\:-\:2p}

\hookrightarrow \sf{40\:=\:64\:-\:2p}

\sf{\because{\alpha^2\:+\:\beta^2\:=\:40\:(Given)}}

\hookrightarrow \sf{40\:-\:64\:=\:-\:2p}

\hookrightarrow \sf{-24\:=\:-2p}

\hookrightarrow \sf{\dfrac{-24}{-2}\:=\:p}

\hookrightarrow \sf{\dfrac{24}{2}\:=\:p}

\hookrightarrow \sf{12\:=\:p}

° Value of p is 12

Similar questions