Physics, asked by omdalvi42, 4 months ago

check the correctness of equation using dimensions analysis of s=ut-1/2at²​

Answers

Answered by RISH4BH
51

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Given :- }}}

\textsf{$\implies$ Second equation of motion i.e. = $\sf s = ut +\dfrac{1}{2}at^2$ }

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: To \ Check  :- }}}

\textsf{$\implies$ The correctness of the equation dimensionally.}

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Answer :- }}}

The equation given to us is s = ut + ½at². This is the second equation of motion which establishes the relationship between acclⁿ , displacement , time and initial velocity . Here , a is acceleration , s is displacement , t is time and u is initial velocity. So ,

\sf\longrightarrow Dimensional \ formula \ of \ velocity =[v]= \red{ [ M^0 L^1 T^{-1}]}

\sf\longrightarrow Dimensional \ formula \ of \  Displacement =[s] =\red{ [ M^0 L^1 T^{0}]}

\sf\longrightarrow Dimensional \ formula \ of \ accl^n=[a]=\red{ [ M^0 L^1 T^{-2}]}

\sf\longrightarrow Dimensional \ formula \ of \ time=[t]=\red{ [ M^0 L^0 T^{1}]}

\underline{\purple{\textsf{Hence here we have in LHS as , }}}

\sf :\implies\boxed{  \pink{ \sf  [s] = [ M^0L^1T^0]}}

\rule{200}2

\underline{\purple{\textsf{Hence here we have in RHS as , }}}

\sf:\implies [u][t]+ \dfrac{1}{2}[a][t^2] =( [ M^0 L^1T^{-1}])([ M^0L^0T^1]) +( [ M^0 L^1 T^{-2} ])( [ M^0L^0T^1]^2) \\\\\sf:\implies [u][t]+ \dfrac{1}{2}[a][t^2] = [ M^0 L^1 T^0 ] +( [ M^0 L^1 T^{-2}] )( M^0 L^0 T^2]) \\\\\sf:\implies [u][t]+ \dfrac{1}{2}[a][t^2] =  [ M^0 L^1 T^0 ] + [ M^{(1+0)} L^{(1+0)} T^{(-2+2)}] \\\\\sf:\implies \boxed{\pink{\sf  [u][t]+ \dfrac{1}{2}[a][t^2] = [ M^0 L^1 T^0 ] + [ M^0 L^1 T^0 ] }}

\textsf{$\to$ Since the dimensions of LHS and RHS is same,}\\\textsf{ i.e.\red{[ $\sf M^0L^1T^{0}$]} .Hence the formula is dimensionally correct.}

\underline{\underline{\textsf{\textbf{ \blue{Hence \ Proved \ ! }}}}}

Attachments:
Similar questions