Physics, asked by santoshadK0101, 6 months ago

Check the correctness of formula, T=2ᴫ√m/k , T be the time period, m be the mass and k be
the force per unit displacement

Answers

Answered by nirman95
10

To check:

Correctness of the formula :

 \boxed{ \sf{T = 2\pi \sqrt{ \dfrac{m}{k} } }}

Calculation:

We shall use DIMENSIONAL ANALYSIS to check the correctness of the above equation. In this analysis , we shall try to check the dimensions on the LHS and RHS :

LHS:

 \therefore  \: \bigg \{T \bigg \} =  \bigg \{time  \bigg\}

RHS:

 \therefore \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ \sqrt{ \dfrac{m}{k} }  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ \sqrt{ \dfrac{m}{ (\frac{force}{x} )} }  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ \sqrt{ \dfrac{M}{ (\frac{ML{T}^{ - 2} }{L} )} }  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ \sqrt{ \dfrac{1}{  {T}^{ - 2} } }  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ \sqrt{  {T}^{2} }  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ T  \bigg \}

 \implies \:  \bigg \{2\pi \sqrt{ \dfrac{m}{k} }  \bigg \} \equiv \bigg \{ time  \bigg \}

So, LHS = RHS .

Hence, the equation is dimensionally correct.

[Hence checked]

Similar questions