Math, asked by muralimanas30, 1 year ago

check weather 1/2, 1 , -1/2 are the zeroes of the polynomial 2x^2 + x^2- 5x + 2​

Answers

Answered by tejasgupta
16

\text{Given polynomial p(x) = } 2x^3 + x^2 - 5x + 2\\\\\text{Zeros to check = } \dfrac{1}{2}, \: 1, \: \dfrac{-1}{2}\\\\\text{Let's begin.}\\\\p \left( \dfrac{1}{2} \right) = 2 \left( \dfrac{1}{2} \right) ^3 + \left( \dfrac{1}{2} \right) ^2 - 5\left( \dfrac{1}{2} \right) + 2\\\\\\= 2 \left( \dfrac{1}{8} \right) + \left( \dfrac{1}{4} \right) - \left( \dfrac{5}{2} \right) + 2\\\\\\= \left( \dfrac{1}{4} \right) + \left( \dfrac{1}{4} \right) - \left( \dfrac{5}{2} \right) + 2\\

\left( \dfrac{1+1-10+8}{4} \right)\\\\\\= \left( \dfrac{10-10}{4} \right)\\\\\\= \left( \dfrac{0}{4} \right)\\\\\\= 0\\\\\text{Thus, $\dfrac{1}{2}$ is a zero of p(x).}\\\\\text{Now, taking p(1), we have}\\\\2(1)^3 + 1^2 - 5(1) + 2\\\\= 2 + 1 - 5 + 2 \\\\= 5-5\\\\= 0\\\\\text{Thus, 1 is also a zero of p(x).}\\\\\text{Let's ckeck $- \dfrac{1}{2}$ now.}\\\\

p \left( \dfrac{-1}{2} \right) = 2 \left( \dfrac{-1}{2} \right) ^3 + \left( \dfrac{-1}{2} \right) ^2 - 5 \left( \dfrac{-1}{2} \right) + 2\\\\\\= 2 \left( \dfrac{-1}{8} \right) + \left( \dfrac{1}{4} \right) + \left( \dfrac{5}{2} \right) + 2\\\\\\= \left( \dfrac{-1}{4} \right) + \left( \dfrac{1}{4} \right) + \left( \dfrac{5}{2} \right) + 2\\\\\\= \left( \dfrac{5}{2} \right) + 2\\\\\\= \left( \dfrac{5+4}{2} \right)\\\\\\= \left( \dfrac{9}{2} \right) \ne 0\\

\text{Thus, $\dfrac{-1}{2}$ is not a zero of p(x).}


Tomboyish44: Awesome answer!
Anonymous: well isn't it 2x² + x² ??
Anonymous: Wrong!
Anonymous: 21/4
Anonymous: Nd not 9/2
Anonymous: Naah, sorry, it's right ✔️
tejasgupta: :)
Anonymous: well I got it !!
Answered by Anonymous
8

 \huge{\boxed{\textbf{Answer}}}

♦ Well in the question above it is asked to check whether  \dfrac{1}{2} , 1 and  \dfrac{-1}{2} are the zero of the polynomial  2x^2 + x^2 - 5x + 2

Well the Polynomial as the terms  2x^2 \: and\: x^2 is away we will consider it as =  2x^3 + x^2 - 5x + 2

♦ Now before we find out we must know what is the zero of a Polynomial ?

>> Well the zero of a Polynomial is the value of "x" for which the end product of the polynomial is zero .

♦ For checking we will substitute the value of x as  \dfrac{1}{2} , 1 and  \dfrac{-1}{2}

 \large{\boxed{\textbf{Checking}}}

♦ When x =  \dfrac{1}{2}

• Then

 2x^2 +x^2 - 5x + 2

 = 2(\dfrac{1}{2})^3 + (\dfrac{1}{2})^2 - 5(\dfrac{1}{2})+ 2

 = \dfrac{2}{8} + \dfrac{1}{4} -  \dfrac{5}{2}+ 2

 = \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{5}{2} +2

 = \dfrac{2}{4} - \dfrac{5}{2}  + 2

 = \dfrac{1}{2} - \dfrac{5}{2} + 2

 = \dfrac{1-5+4}{2}

 = \dfrac{5 - 5}{2}

 = \dfrac{0}{2}

= 0

:- Hence a zero .

♦ When x = 1

• Then

 2x^2 +x^2 -5x +2

 = 2(1^3) + (1^2) - 5(1) + 2

 = 2 + 1 - 5 + 2

 = 3 + 2 - 5

 = 5 - 5

:- Hence a zero .

♦ When x =  \dfrac{-1}{2}

• Then

 2x^3 + x^2 - 5x + 2

 = 2(\dfrac{-1}{2})^3 + (\dfrac{1}{2})^2 - 5(\dfrac{-1}{2}) + 2

 = \dfrac{-2}{8} + \dfrac{1}{4} - \dfrac{-5}{2} + 2

 = \dfrac{-1}{4} + \dfrac{1}{4}  - \dfrac{-5}{2} + 2

 = \dfrac{5}{2} +2

 = \dfrac{5+4}{2}

 = \dfrac{9}{2}

:- Hence not a zero .


Anonymous: Wrong!
Anonymous: 3x^2-5x+2
Anonymous: From where it came?
Anonymous: You've to take the given equation only :)
Anonymous: well given equation is 2x² + x² - 5x + 2 !!
Anonymous: Ya!
Anonymous: Substitute those values in the given equation only!
Anonymous: :)
Anonymous: Ya..! Now it's right ✔️
Anonymous: ^_^
Similar questions