Math, asked by rameshchadrarameshch, 11 months ago

Check whether -150 is the term of AP is such that 11,8,5,2....

Answers

Answered by amitkumar44481
6

  \bold  \red \star \:  \underline{Given:-} \begin {cases} \sf{ AP :- \: } \\  \sf{11 ,\: 8,\: 5,\: 2,\: ........} \\  \sf{a_n =  - 150} \end{cases}

 \bold \red \star \:  \underline{Solution:-}

 \longrightarrow \: \green a =\green{ 11.} \:  \:  \:

 \longrightarrow \:  \blue  d = a_2-a_1. \\  \\  \longrightarrow \:  \:  \:  \:  \:  \:    = 8 - 11. \\  \\  \longrightarrow \:  \:  \:  \:   \:  \: = \blue {- 3.}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a_n  = a + (n - 1)d. \\  \\ \:  \:  \:  \:  - 150 =  11 + (n - 1) - 3. \\  \\  \frac{\cancel{ - }  \cancel{150}}{  \cancel{-} \cancel {3}}  = 11 + (n - 1). \\  \\ 50 - 11 = n - 1. \\  \\ \:  \:  39 + 1 = n. \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  n = \red {40.}

 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:\:\:  \:\:\:\:{ \huge  {\underline { \boxed{n = \red{ 40.}}}}}

Yes, \:  \red{ -150}  \:  \: is \:  the \:  term  \: of  \: AP.

Answered by GalacticCluster
6

Answer:

Given -

  • \sf{a}_{n} = -150
  • a = 11
  • d = 8 - 11 = -3
  • n = ?

\\

We know that,

 \\  \implies \sf \: a_n = a + (n - 1) \: d \\  \\  \\  \implies \sf \:  - 150 = 11 + (n - 1) \:  (- 3) \\  \\  \\  \implies \sf \:  - 150 = 11 - 3n + 3 \\  \\  \\  \implies \sf \:  - 150 = 14 - 3n \\  \\  \\  \implies \sf \:  - 150  - 14 = 3n \\  \\  \\  \implies \sf \:  - 164 = 3n \\  \\  \\   \sf \: or, \: 3n = 164 \\  \\  \\  \implies \sf \: n =  \frac{164}{3}  \\  \\

which is not an integral number.

Hence, -150 is not a term of the AP.

Similar questions