Math, asked by jaswanthbhogi31541, 11 months ago

Check whether 32 is present or not in the G.P.√2,2,2√2,4,........

Answers

Answered by saumildoshi241
2

Answer:

yes

Step-by-step explanation:

a=√2

r=2/√2

=√2

l =32

l= a(rn -1)/r-1

l=√2(2n-1)/2-1

32=2n

2*2*2*2*2*2=2n

12 = n

Answered by VishnuPriya2801
3

Step-by-step explanation:

Given GP is √2 , 2 ,2√2...

We know that,

n th term of GP

 = a \times  {r}^{n - 1}  \\

Here,

Common ratio (r) = t(n)/t(n-1)

= t(2)/t(1)

= 2/√2

= √2

first term (a) = √2

32 =  \sqrt{2}  \times  {( \sqrt{2}) }^{n - 1}  \\  {2}^{5}  =  ( {2}^{ \frac{1}{2} } )  \times ({2}^{\frac{1}{2} } ) ^{n - 1}   \\  \\ w e\: know \: that \: ( {a}^{m} ) ^{n}  =  {a}^{m \times n}  \\  \\  {2}^{5}  =   ({2}^{ \frac{1}{2} } ) \times  ({2}^{ \frac{n - 1}{2} })  \\  \\ we \: know \: that \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\  \\  {2}^{5} =  {2}^{ \frac{1}{2} +  \frac{n - 1}{2}  }   \\  \\   {2}^{5}  =  {2}^{ \frac{1 + n - 1}{2} }  \\  \\  {2}^{5}  =  {2}^{ \frac{n}{2} }  \\  \\ here \: the \: bases \: are \: equal \: then \: the \: powers \: are \: also \: equal. \\  \\ 5 =  \frac{n}{2}  \\  \\ n \:  = 5 \times 2 \\  \\ n = 10.

Hence 32 is present in the given GP.

Similar questions