Math, asked by 07powerrangers, 3 months ago

check whether 44 in a term of the ap , -7,-4,-1 or not​

Answers

Answered by Anonymous
98

Answer:

{ \large{ \pmb{ \sf{★Given... }}}}

-7 , -4 , -1 are in AP

{ \large{ \pmb{ \sf{★To  \: Find... }}}}

Check that 44 is a term of AP

{ \large{ \pmb { \sf{★Formula  \: used... }}}}

 \boxed{ \sf{ a_{n} = a + (n - 1)d }}

{ \large{ \pmb{ \sf{★Solution... }}}}

Let's find common difference,

d = a2 - a1 = -4 - (-7) = -4 + 7 = 4

Now Taking,

  • { \sf{a =  - 7}}
  • { \sf{d =   3}}
  • { \sf{ a_{n} = 44}}

Now Substitute the values in formula,

{ \implies{ \sf{44 =  - 7 + (n - 1)3}}}

 \: { \implies{ \sf{44 + 7 =3n - 3 }}}

 \: { \implies{ \sf{51 = 3n - 3}}}

 \: { \implies{ \sf{3n = 51 + 3}}}

 \: { \implies{ \sf{3n = 54}}}

 \: { \implies{ \sf{n = 18}}}

So, 44 is the 18th term of given AP

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

Hence, 44 is a term in given AP

Similar questions