Math, asked by simerdeepkaur2006, 2 months ago

check whether (5,-2),(6,4)and(7-2) are the vertices of an isoceles triangle.​

Answers

Answered by ImperialGladiator
6

Answer:

Yes they form an isoceles triangle.

Explanation:

Let the given points be -

  • A(5, -2)
  • B(6, 4)
  • C(7, -2)

Since, it forms an isoceles triangle distance between any two vertices must be equal.

Distance of AB is given by,

\longrightarrow \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Where,

  •  x_1 \: {\rm and } \: x_2 \rm \: is \: 5 \: and 6
  • And,  y_1 \: {\rm and } \: y_2 \rm \: is \: -2 \: and 4

So,

 \to  \: \sqrt{ {(6 - 5)}^{2} +  { \big(4 - ( - 2) \big)}^{2}  }  \\

\to \:  \sqrt{ {(1)}^{2} + ( 4+ 2 {)}^{2}  }  \\

\to \:  \sqrt{1 +  {6}^{2} }  \\

\to \:  \sqrt{1 + 36}  \\

\to \rm \sqrt{37}  \: units

So on, the distance of BC :-

\to \: \sqrt{( x_2 - x_1 {)}^{2} +  {(y_2 - y_1)}^{2}  } \\

\to \:  \sqrt{ {(7 - 6)}^{2} +  { \big(4 - ( - 2) \big)}^{2}  } \\

\to \:  \sqrt{ {(1)}^{2} +  {(4 + 2)}^{2}  } \\

\to \:  \sqrt{1 +  {(6)}^{2} } \\

\to \:  \sqrt{1 + 36} \\

\to \:   \rm\sqrt{37}  \: units.

And also, calculating distance of AC :-

\to \: \sqrt{( x_2 - x_1 {)}^{2} +  {(y_2 - y_1)}^{2}  } \\

\to \:  \sqrt{(7 - 5 {)}^{2}  +  { \big( - 2 - ( - 2) \big)}^{2} } \\

\to \: \sqrt{ {(2)}^{2}  + ( - 2 + 2)}  \\

\to \:  \sqrt{4 + 0} \\

\to \rm \: 2 \: units

So here, we are getting two units equal AB and BC as √37 units, which proves the property of an isoceles traingle i.e., An isoceles traingle have two sides equal.

Hence, given points (5, -2), (6, 4) and (7, -2) are the vertices of a isoceles traingle.

_____________________

Formula used :

\to \: \sqrt{( x_2 - x_1 {)}^{2} +  {(y_2 - y_1)}^{2}  } \\

  • (x_1, y_1) denotes coordinates of the first point.

  • (x_2, y_2) denotes coordinates of the second point.

Similar questions