Math, asked by MEVIRICK8944, 11 months ago

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1

Answers

Answered by nikitasingh79
14

Answer WITH Step-by-step explanation:

i) The division process is :

t² - 3)2t⁴ + 3t³ - 2t² - 9t - 12 ( 2t² + 3t + 4

       2t⁴        - 6t²  

      (-)         (+)

      ----------------

            3t³ + 4t² -9t

            3t³        - 9t

           (-)         (+)

            --------------

                   4t² - 12  

                  4t² - 12

                 (-)   (+)

            -----------------

                        0  

                   

Here, the remainder is 0.

Hence, t² - 3 is a factor of 2t⁴ + 3t³ - 2t² - 9t - 12.

ii)  

x² + 3x + 1)3x⁴ + 5x³ - 7x² + 2x + 2(3x² - 4x + 2

                3x⁴ + 9x³ + 3x²  

               (-)   (-)      (-)

              --------------------

                     - 4x³ -10x² + 2x  

                     - 4x³ -12x² - 4x  

                     (+)  (+)     (+)

                    ------------------------

                            2x² + 6x + 2  

                            2x² + 6x + 2  

                            (-)  (-)     (-)

                         ------------------

                                      0  

                               

Here,the remainder is 0 .

Hence, x² + 3x + 1 is a factor of 3x⁴ + 5x³ - 7x² + 2x + 2 .

iii)

x³ – 3x + 1) x^5 – 4x³ + x² + 3x + 1(x² -1

                  x^5 - 3x³ + x²  

                 (-)    (+)     (-)

                 -------------------

                        -x³ + 3x + 1

                         -x³ + 3x - 1

                        (+)  (-)     (+)

                       ------------------

                               +2  

Here, remainder is 2 ≠ 0

Hence, x³ - 3x + 1 is not a factor of x^5 - 4x³ + x² + 3x + 1

Divide the second polynomial by first polynomial.

(i)If remainder is zero ,then first polynomial is a factor of the second polynomial.

(ii) If remainder is not zero, then first polynomial is not a factor of second polynomial.

HOPE THIS ANSWER WILL HELP YOU...

Answered by sakshisaar
1

Answer:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1

Step-by-step explanation:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) t^2-3, 2t^4+3t^3-2t^2-9t-12(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2(iii) x^3-3x+1, x^5-4x^3+x^2+x+1

Similar questions