Math, asked by tarikanwar7128, 11 months ago

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t^2-3, 2t^4+3t^3-2t^2-9t-12
(ii) x^2+x+1, 3x^4+5x^3-7x^2+2x+2
(iii) x^3-3x+1, x^5-4x^3+x^2+x+1

Answers

Answered by nikitasingh79
5

Divide the second polynomial by first polynomial.

(i)If remainder is zero ,then first polynomial is a factor of the second polynomial.

(ii) If remainder is not zero, then first polynomial is not a factor of second polynomial.

i) The division process is :

t² - 3)2t⁴ + 3t³ - 2t² - 9t - 12 ( 2t² + 3t + 4

      2t⁴        - 6t²  

     (-)         (+)

     ----------------

           3t³ + 4t² -9t

           3t³        - 9t

          (-)         (+)

           --------------

                  4t² - 12  

                 4t² - 12

                (-)   (+)

           -----------------

                       0  

                   

Here, the remainder is 0.

Hence, t² - 3 is a factor of 2t⁴ + 3t³ - 2t² - 9t - 12.

ii)  

x² + 3x + 1)3x⁴ + 5x³ - 7x² + 2x + 2(3x² - 4x + 2

               3x⁴ + 9x³ + 3x²  

              (-)   (-)      (-)

             --------------------

                    - 4x³ -10x² + 2x  

                    - 4x³ -12x² - 4x  

                    (+)  (+)     (+)

                   ------------------------

                           2x² + 6x + 2  

                           2x² + 6x + 2  

                           (-)  (-)     (-)

                        ------------------

                                     0  

                               

Here,the remainder is 0 .

Hence, x² + 3x + 1 is a factor of 3x⁴ + 5x³ - 7x² + 2x + 2 .

iii)

x³ – 3x + 1) x^5 – 4x³ + x² + 3x + 1(x² -1

                 x^5 - 3x³ + x²  

                (-)    (+)     (-)

                -------------------

                       -x³ + 3x + 1

                        -x³ + 3x - 1

                       (+)  (-)     (+)

                      ------------------

                              +2  

Here, remainder is 2 ≠ 0

Hence, x³ - 3x + 1 is not a factor of x^5 - 4x³ + x² + 3x + 1

HOPE THIS ANSWER WILL HELP YOU...

Some more questions :  

Apply division algorithm to find the quotient q(x) and remainder r(x) in dividing f(x) by g(x) in each of the following:

brainly.in/question/7079682

Apply division algorithm to find the quotient q(x) and remainder r(x) in dividing f(x) by g(x) in each of the following:

brainly.in/question/7060874

Answered by hemlata98055
5

Answer:

(I) Yes. (ii) Yes. (iii) No.

Step-by-step explanation:

Hope It Helps You

Attachments:
Similar questions