Check whether the following pairs of linear equations are consistent or inconsistent: (1)x+ 2y = 10: 2x - 3y = 12 1 (2) 2x + 3y = 6; 4x + 6y = 12 (3) 3x + 5y = 30; 9x + 154
Answers
Answer:
Step-by-step explanation:
1) Given that,
x + 2y = 10 and 2x - 3y = 12.
x + 2y - 10 = 0 and 2x - 3y - 12 = 0
a1/ a2 = 1 / 2 , b1 / b2 = 2 / - 3 , c1 / c2 = - 10 / - 12 = 5 / 6
Since, a1 / a2 ≠ b1 / b2 .
∴ They are intersecting lines and hence, consistent pair of linear equations.
2) Given that,
2x + 3y = 6 and 4x + 6y = 12
2x + 3y - 6 = 0 and 4x + 6y - 12 = 0.
a1 / a2 = 2 / 4 , b1 / b2 = 3 / 6 , c1 / c2 = - 6 / - 12 .
Since, a1 / a2 = b1 / b2 = c1 / c2.
∴ They are coincident lines ( dependent lines ).
3) Given that,
3x + 5y = 30 and 9x + 15y = 4.
3x + 5y - 30 = 0 and 9x + 15y - 4 = 0.
a1 / a2 = 3 / 9 , b1 / b2 = 5 / 15 , c1 / c2 = - 30 / - 4
Since, a1 / a2 = b1 / b2 ≠ c1 / c2.
∴ They are parallel lines and hence inconsistent papair of linear equations.
Step-by-step explanation:
Check whether the following pairs of linear equations are consistent or inconsistent : -
(1) x + 2y = 10; 2x - 3y = 12
(2) 2x + 3y = 6; 4x + y = 12
(3)3x + 5y= 30; 9x + 15y =