Computer Science, asked by kavithakolli2008, 2 months ago

Check whether the string "aabb" is accepted by the following grammar using CYK algorithm. S-SA A BAB

B-BBb​

Answers

Answered by abdulrubfaheemi
0

Answer:

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》</p><p></p><p>☆ Given :</p><p></p><p>Polynomial = 12x²-4x+3x-1 i.e.12x² -x -1</p><p></p><p>___________________________</p><p></p><p>☆ To Calculate :</p><p></p><p>Zeros of the polynomial 12x²-4x+3x-1.</p><p></p><p>___________________________</p><p></p><p>☆ Also To Verify :</p><p></p><p>Relationship between Zeros And Coefficient.</p><p></p><p>___________________________</p><p></p><p>¤ Relationship between</p><p></p><p>Zeros And Coefficients :</p><p></p><p>If a Polynomial is of the Form ax² + bx + c.</p><p></p><p>and it's zeros are α and β.</p><p></p><p>Then,</p><p></p><p>α + β = -b/a</p><p></p><p>and</p><p></p><p>αβ = c/a</p><p></p><p>___________________________</p><p></p><p>☆ Solution :</p><p></p><p>《♤ {Calculating Zeros}♤》</p><p></p><p>12x²-4x+3x-1</p><p></p><p>= 4x(3x - 1) + 1(3x - 1 )</p><p></p><p>= (3x - 1)(4x+1)</p><p></p><p>So,</p><p></p><p>Zeros of the given polynomial are 1/3 and -1/4.</p><p></p><p>●》α= 1/3 and β = -1/4</p><p></p><p>《♤{Verifying Releationship}♤》</p><p></p><p>\begin{gathered} \sf\alpha + \beta = \frac{1}{3} + ( \frac{ - 1}{4} ) \\ \\ = \frac{1}{3} - \frac{1}{4} \\ \\ = \frac{1}{12} = \bf- \frac{b}{a} \: \: \: \{verified \}\end{gathered}α+β=31+(4−1)=31−41=121=−ab{verified}</p><p></p><p>\begin{gathered} \sf\alpha \beta = \frac{1}{3} \times ( - \frac{1}{4} ) \\ \\ = - \frac{1}{12} = \bf \frac{c}{a} \: \: \: \: \{verified \}\end{gathered}αβ=31×(−41)=−121=ac{verified}</p><p></p><p>___________________________</p><p></p><p>

Similar questions