Math, asked by aditya65438, 4 months ago

Choose suitable value of p so that the expression
( {x}^{2}  - px +  \frac{121}{25} )
is complete square. ​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given - }}

 \sf \: A  \: quadratic \:  expression \:  :  {x}^{2} - px + \dfrac{121}{25}

\large\underline{\sf{To\:Find - }}

 \sf \: value \: of \: p \: for \: which \: expression \: is \: perfect \: square

Basic Concept Used :-

  • Method of completing squares

\large\underline{\sf{Solution-}}

 \sf \: A  \: quadratic \:  expression \:  :  {x}^{2} - px + \dfrac{121}{25}

Add and subtract the square of half the coefficient of x

It means,

 \sf \: Add  \: and  \: subtract \: \dfrac{ {p}^{2} }{4}  \: we \: get

  =   \: \sf \:  {x}^{2} - px + \dfrac{121}{25} + \dfrac{ {p}^{2} }{4}  - \dfrac{ {p}^{2} }{4}

  =   \: \sf \:  {x}^{2} - px  + \dfrac{ {p}^{2} }{4}  + \dfrac{121}{25}- \dfrac{ {p}^{2} }{4}

  =   \: \sf \:  \bigg( {x}^{2}  \times 2 \times \dfrac{p}{2}  \times x + \dfrac{ {p}^{2} }{4} \bigg)  +  \dfrac{121}{25}- \dfrac{ {p}^{2} }{4}

  =   \: \sf \:  {\bigg( x - \dfrac{p}{2} \bigg) }^{2}  +  \dfrac{121}{25}- \dfrac{ {p}^{2} }{4}

Now, expression must be a perfect square, so

\bf\implies \: \dfrac{121}{25}- \dfrac{ {p}^{2} }{4}  = 0

 \rm \:  \dfrac{121}{25} \:  =  \: \dfrac{ {p}^{2} }{4}

 \rm \:  {p}^{2}  = \dfrac{121 \times 4}{25}

\rm :\implies\:p \:  =  \:  \pm \: \dfrac{11 \times 2}{5}  =  \pm \: \dfrac{22}{5}

 \bf \: Hence,  \: value  \: of  \: p \:  =  \:  \pm \: \dfrac{22}{5}

Additional Information :-

Nature of roots of Quadratic equation :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Different method by which you can solve quadratic equation

There are various methods by which you can solve a quadratic equation such as:

  • Factorization

  • Completing the square

  • Quadratic formula

  • Graphical Method

These are the four general methods by which we can solve a quadratic equation.

Similar questions