Choose the type of comment .... // program to calculate sum
Answers
Answered by
1
Answer:
5
Answer:
General quadratic polynomial equation is
\begin{gathered}{x}^{2} - ( \alpha + \beta )x + \alpha \beta = 0 \\ \\ {x}^{2} - ( \sqrt{2} + 1)x + \frac{1}{ \sqrt{2} + 1 } = 0 \\ \\ {x}^{2} - ( \sqrt{2} + 1)x + \frac{1}{ \sqrt{2} + 1 } \times \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1} = 0 \\ \\\red{\boxed{\green{ {x}^{2} - ( \sqrt{2} + 1)x + ({ \sqrt{2} - 1 } ) = 0}}}\end{gathered}
x
2
−(α+β)x+αβ=0
x
2
−(
2
+1)x+
2
+1
1
=0
x
2
−(
2
+1)x+
2
+1
1
×
2
−1
2
−1
=0
x
2
−(
2
+1)x+(
2
−1)=0
Answered by
0
akkdjjsjjzjjzjakklkjvvbbbok
Similar questions