Math, asked by shivam2745, 3 months ago

CI.
0-30
30-6060-9090-120 120-150150-180
Frequency
12
21
X
52
y y
।।
यदि उपरोक्त बंटन का माध्य । और बारम्बारता का योग 150 हो तो अज्ञात
बारम्बारता तथा y का मान ज्ञात कीजिए।​

Answers

Answered by mathdude500
1

Correct Statement is

If mean of the following data is 95 and sum of all the frequencies is 150, find the values of x and y.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

⠀⠀⠀⠀</p><p>\begin{gathered}\boxed{\begin{array}{cccccc}\sf Class\: interval&amp;\sf F_i&amp;\sf Mid\:Value&amp;\sf u_i = \dfrac{x_i  - 75}{30}&amp;\sf f_i u_i\\\frac{\quad \qquad\qquad}{}&amp;\frac{\quad \qquad \qquad}{}&amp;\\\sf 0-30&amp;\sf 12&amp;\sf 15&amp;\sf -2&amp;\sf -24\\\\\sf 30-60 &amp;\sf 21&amp;\sf 45&amp;\sf -1 &amp;\sf -21 \\\\\sf 60-90 &amp;\sf x&amp;\sf A = 75&amp;\sf 0&amp;\sf 0\\\\\sf 90-120&amp;\sf 52&amp;\sf 105&amp;\sf 1 &amp;\sf 52\\\\\sf 120-150 &amp;\sf y &amp;\sf 135&amp;\sf 2y&amp;\sf 8\\\\\sf 150-180 &amp;\sf 11&amp;\sf  165&amp;\sf 3&amp;\sf 33\\\frac{\qquad \qquad \qquad}{}&amp;\frac{\qquad \qquad \qquad}{}&amp;\frac{\qquad\qquad\qquad}{}&amp;\frac{\qquad \qquad\qquad}{}&amp;\frac{\qquad \qquad\qquad}{}&amp;\frac{\qquad \qquad\qquad}{}\\\sf Total&amp; \sf \sum f = 150&amp;&amp;&amp; \sf 40 + 24\end{array}}\end{gathered}

☆ Now, we have

\tt :  ⟼A = 75 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \ \\ \tt :  ⟼h = 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt :  ⟼ \sum{f_i} = 150  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt :  ⟼ \sum \: f_i u_i = 40 + 2y

\tt :  ⟼ \: mean \:  =  \:  \overline {x} \:  = 95

\begin{gathered}\tt\red {According \: to \: statement}\end{gathered}

☆ Sum of frequency = 150

\bf\implies \: \sum \: f_i \:  =  \: 150

\tt :  ⟼12 + 21 + x + 52 + y + 11 = 150

\tt :  ⟼96 + x + y = 150

\tt :  ⟼x + y = 150 - 96

\tt :  ⟼x + y = 54 -  -  - (1)

\begin{gathered}\tt\red{According \: to \: statement}\end{gathered}

\begin{gathered}\bf\red{mean \:  = 95}\end{gathered}

\begin{gathered}\bf\red{\tt :  ⟼ \:  \overline {x} \: =  A + \: h \times \dfrac{ \sum \: f_i u_i}{ \sum \:f_i  }  }\end{gathered}

\tt :  ⟼ \: 95 = 75 + 30 \times \dfrac{40 + 2y}{150}

\tt :  ⟼ \: 95 - 75 = \dfrac{40 + 2y}{5}

\tt :  ⟼ \: 20 = \dfrac{40 + 2y}{5}

\tt :  ⟼ \: 2y = 100 - 40

\tt :  ⟼ \: 2y = 60

\bf\implies \:y = 30

☆ On substituting y = 30 in equation (1), we get

\tt :  ⟼ \: x + 30 = 54

\bf\implies \:x = 24

Answered by SmitaMissinnocent
2

The prime minister is the senior-most member of cabinet in the executive of government in a parliamentary system. The prime minister selects and can dismiss members of the cabinet; allocates posts to members within the government; and is the presiding member and chairperson of the cabinet.

Seat: Prime Minister's Office, South Block, Central Secretariat, New Delhi, India; Camp ...

Precursor: Vice President of the Executive Councilj

Similar questions