Math, asked by AamirGeneral4144, 9 months ago

Circle O is represented by the equation (x + 7)2 + (y + 7)2 = 16. What is the length of the radius of circle O?
A. 3
B. 4
C. 7
D. 9
E. 16

Answers

Answered by BrainlyPopularman
10

GIVEN :

 \: { \huge{. \:  \: }}{ \rm{Equation \:  \: of \:  \: circle \:  -  {(x + 7)}^{2} +  {(y + 7) }^{2} = 16  }}

TO FIND :

 \: { \huge{. \:  \: }}{ \rm{radius =  ? }}

SOLUTION :

METHOD - (1)

If radius of circle is r and center of circle is (a , b)

then standard equation of circle is –

 \\ { \huge{. \:  \: }}{ \green{ \boxed{  \bold{ {(x  - a)}^{2} +  {(y  - b) }^{2} =  {r}^{2}   }}}} \\

• So that –

  \\ \implies{ \rm{  {(x  - ( - 7))}^{2} +  {(y  - ( -  7)) }^{2} =  {(4)}^{2}  }} \\

• Now compare –

  \\ \: { \huge{ \:  \: . \:  \: }}{  \rm{ a =  - 7}} \\

  \\ \: { \huge{ \:  \: . \:  \: }}{  \rm{ b=  - 7}} \\

  \\ \: { \huge{ \:  \: . \:  \: }}{  \rm{ r=  4}} \\

Hence, Center is (-7 , -7) and radius(r) = 4

METHOD - (2) :

  \\ { \huge{  . \:  }}{ \rm{ Genral \:  \: equation \:  \: of \:  \: circle \:  -  }} \\

 \\ { \huge{ \: \: \star \:  \: }} \large{ \green{ \boxed{  \bold{ {x }^{2} +  {y}^{2} + 2gx + 2fy  + c =   0 }}}} \\

 \\ { \huge{.}}{ \rm{ \: \:  Here \:  \:  - }} \\

  \\  \:  \:  \:  \:  \:  \:  \:  \: .{ \pink { \rm{ \: \:   \:  \:  center = ( - g, - f)}}} \\

  \\  \:  \:  \:  \:  \:  \:  \:  \: .{ \pink{ \rm{ \: \:   \:  \:  radius =  \sqrt{ {g}^{2}  +  {f}^{2} - c }  }}} \\

• So that –

  \\  \implies{ \rm{  {(x + 7)}^{2}   +  {(y + 7)}^{2}  = 16}} \\

• Using identity –

  \\  \bigstar \:  \large{ \red{ \boxed{ \rm{  {(a + b)}^{2}    =  {a}^{2} +  {b}^{2}  + 2ab }}}} \\

  \\  \implies{ \rm{  {x}^{2} +  {7}^{2}    + 2(x)(7)+   {y}^{2} +  {7}^{2}    + 2(y)(7) = 16}} \\

  \\  \implies{ \rm{  {x}^{2} +  {y}^{2}   + 14x + 14y + 49 + 49 = 16}} \\

  \\  \implies{ \rm{  {x}^{2} +  {y}^{2}   + 14x + 14y  + 98 - 16= 0}} \\

  \\  \implies{ \rm{  {x}^{2} +  {y}^{2}   + 14x + 14y  + 82= 0}} \\

• Now compare –

  \\  \:  \:  \:  \:  \:  \:  \:  \: . { \rm{ \: \:   \:  \:  g = 7}} \\

  \\  \:  \:  \:  \:  \:  \:  \:  \: . { \rm{ \: \:   \:  \:  f = 7}} \\

  \\  \:  \:  \:  \:  \:  \:  \:  \: . { \rm{ \: \:   \:  \:  c = 82}} \\

• So that –

  \\  \:  \:  \: .{ { \rm{ \: \:   \:  \:  center = ( - 7, - 7)}}} \\

  \\  \:  \:  \: .{ { \rm{ \: \:   \:  \:  radius =  \sqrt{ {(7)}^{2} +  {(7)}^{2}  - 82 } }}} \\

  \\   \implies{ { \rm{  \:   radius =  \sqrt{ 49+ 49  - 82 } }}} \\

  \\   \implies{ { \rm{  \:   radius =  \sqrt{ 98 - 82 } }}} \\

  \\   \implies{ { \rm{  \:   radius =  \sqrt{ 16 } }}} \\

  \\   \implies{ { \rm{  \:   radius =  \pm \: 4 }}} \\

• But radius will be positive , so that –

  \\   \implies{ \red{ \boxed { \rm{  \:   radius = 4 }}}} \\

Hence , Option (b) is correct.

Answered by Anonymous
0

Given ,

The eq of circle is :

(x + 7)² + (y + 7)² = 16

It can be written as ,

\sf \Rightarrow   {(x - (-7))}^{2}  + { (y - (-7))}^{2}  =  {(4)}^{2} \:  --- \:  (i)

We know that , the standard eq of circle is given by

 \sf \star \:  \:  {(x - h)}^{2}  +  {(y - k)}^{2} =  {(r)}^{2}

Where ,

  • (h,k) = centre of circle
  • (x,y) = any point on the perimeter of circle
  • (r) = radius of circle

On comparing eq (i) with standard eq of the circle , we get

h = -7

k = -7

r = 4

\therefore \sf \bold{ \underline{The  \: radius  \: of  \: circle \:  is \:  4  \: units }}

Similar questions