Math, asked by Anonymous, 3 months ago

Class 10

Mathematics

Chapter 9 - Some applications of Trigonometry

Formulas Needed

Quality Answer Needed​

Answers

Answered by SweetLily
42

Their aren't any formulas in chapter 'some application of trignometry' but you should be aware of the important terms from this chapter and Trignometry ratios and formula.

~Important Terms!!

  • Line of sight:-

the line of sight is a line drawn from the eye of an observer to the point in the object viewed by the observer.

  • angle of elevation:-

the angle of elevation of an object viewed, is the angle formed by the line of sight with the horizontal level when it's above the horizontal level.

  • angle of depression:-

the angle of depression of an object viewed, is the angle formed by the line of sight with the horizontal level is below the horizontal level.

----------------------------------------------------

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}</p><p><strong><u>----------------------------------------------------</u></strong></p><p></p><p>[tex] \sf{⇝sin\theta= \frac{perpendicular}{hypothenuse}}

 \sf{⇝cos\theta =\frac{Base}{hypothenuse} }

 \sf{⇝sin\theta= \frac{perpendicular}{hypothenuse}}

 \sf{⇝tan\theta = \frac{perpendicular}{base}}

\sf{⇝cosec\theta = \frac {hypothenuse}{perpendicular}}

 \sf{⇝sec\theta = \frac{hypothenuse}{Base}}

 \sf{⇝Cot\theta = \frac{base}{perpendicular}}

----------------------------------------------------

Answered by AestheticSky
25

\huge{\underline{\underline{\bf Required\:Answer}}}

  • The formulas for "Applications of Trigonometry and "Trigonometric Ratios" are same.

Basic Formula:-

For a triangle ABC, (attachment) , the trigonometric ratios for Ø are as follows:-

\implies\sf \sin(\theta)  = \dfrac{opposite \: side}{hypotenues}  =  \frac{AB}{AC}  \\  \\  \implies\sf\cos(\theta)  =  \dfrac{adjacent \: side}{hypotenues}  =  \frac{BC}{AC}  \\  \\ \implies\sf  \tan(\theta)  =  \dfrac{opposite \: side}{adjacent \: side}  =  \frac{AB}{BC}  \\  \\ \implies\sf \csc(\theta)  =  \dfrac{1} { \sin(\theta) }  =  \dfrac{hypotenues}{opposite \: side}  =  \frac{AC}{AB}  \\  \\ \implies\sf  \sec(\theta)  =  \dfrac{1}{ \cos(\theta) }  =  \dfrac{hypotenues}{adjacent \: side}  =  \frac{AC}{BC}  \\  \\ \sf  \implies\cot(\theta)   =  \dfrac{1}{ \tan(\theta) }  =  \frac{adjacent \: side}{opposite \: side}  =  \frac{BC}{AB}

Trigonometric Ratios for standard angles

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Some more important Formula for tan and Cot

\sf  \implies  \tan(\theta)  =  \dfrac{ \sin(\theta) }{ \cos(\theta) }  \\  \\ \implies  \cot(\theta)  =  \frac{ \cos(\theta) }{ \sin(\theta) }

Important Identies:-

\sf \implies  { \sin^{2}(\theta) }  + { \ \cos ^{2}(\theta) } = 1 \\  \\ \implies{ \ \sec ^{2}(\theta) } - { \ \tan ^{2}(\theta) } = 1 \\  \\ \implies{ \ \csc ^{2}(\theta) } - { \ \cot ^{2}(\theta) } = 1

_____________________________

Attachments:
Similar questions