Math, asked by prakharbajpai650, 6 months ago

Class 10
Trigonometry


Please write the answers step by step

Attachments:

Answers

Answered by MoodyCloud
35

To prove

 \star \tt \:  \frac{tan \:  \theta}{1 - cot \:  \theta}  +  \frac{cot \: \theta }{1 - tan \: \theta }  = 1 + cot \:  \theta\:  + tan \:  \theta

Solution:-

 \star \tt \:  \frac{tan \:  \theta}{1 - cot \: \theta }  +  \frac{cot \: \theta }{1 - tan \: \theta }  = 1 + cot \: \theta  \:  + tan \:  \theta

Take L.H.S

 \implies \tt \:  \frac{tan \:  \theta}{1 - cot \: \theta }  +  \frac{cot \: \theta }{1 - tan\: \theta }

 \implies \tt \:  \frac{tan \:  \theta}{1 -  \frac{1}{tan \:  \theta} }  +  \frac{cot \:  \theta}{1 - tan \:  \theta}

 \implies \tt \:  \frac{tan \: \theta }{(1 - tan \:  \theta) }  +  \frac{cot \: \theta }{1 - tan\: \theta}

 \implies \tt \:  \frac{1}{1 - tan \: \theta} [ \frac{1}{tan \: \theta }  -  {tan}^{2} \theta )]

 \implies \tt \:  \frac{1}{1 - tan \: \theta} [ \frac{1 -  {tan}^{3} \theta }{tan \: \theta } ]

 \implies \tt \:  \frac{1}{1 - tan \:  \theta} [\frac{(1 - tan \: \theta )(1 + tan \:  \theta+  {tan}^{2}  \theta}{tan \: \theta} ] \: \:(Because\: {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  + ab +  {b}^{2} )

 \implies \tt \frac{1 + tan \: \theta+  {tan}^{2}  \theta }{tan \: \theta}

 \implies \tt \: cot \:  \theta \:  + 1 + tan \:  \theta

L.H.S = R.H.S

Hence, Proved

Similar questions