Math, asked by neorah2005, 7 months ago

class 10th icse Arithmetic progression

Find the 25th term of the sequence -5, -5/2, 0, 5/2,.....

Answers

Answered by mysticd
0

 Given \: A.P : -5 ,\frac{-5}{2} ,0, \frac{5}{2},\ldots

 First \:term \: (a = a_{1}) = -5

 Common \: difference (d) = a_{2} - a_{1}

 = \frac{-5}{2} - (-5)

 = \frac{-5}{2} + 5

 = \frac{-5+10}{2}

 = \frac{5}{2}

 \boxed{\pink{ n^{th} \:term (a_{n} = a + (n-1)d }}

 Here, a = -5, d = \frac{5}{2} \:and \: n = 25

 25^{th} \:term = a_{25}

 = a + (25 - 1) d

 = a + 24d

 = -5 + 24 \times \frac{5}{2}

 = -5 + 12 \times 5

 = -5 + 60

Therefore.,

 \red{ 25^{th} \:term \: of \: given \:A.P }

 \green {= 55}

•••♪

Similar questions