Math, asked by Anonymous, 1 day ago

Class 10th//Maths (Trigonometry)
Answer with proper explanation.​

Attachments:

Answers

Answered by suhail2070
2

Answer:

OPTION B IS CORRECT.

Step-by-step explanation:

 \cot(a + b - c)  = 1 \\  \\ a + b - c = 45 \:  \:  \: ...(i) \\  \\  \csc(b + c - a)  = 2 \\  \\ b + c - a = 30 \:  \:  \:  \:  \:  \:  \:  \:  \: ...(ii) \\  \\ solving \: these \:  \:  \: we \: get \\  \\ 2b = 75 \\  \\ b =  \frac{75}{2}  \\  \\ a - c = 45 -  \frac{75}{2} \\  \\  a - c =  \frac{15}{2}  \\  \\  \\  \\ by \: angle \: sum \: property \\  \\ a + b + c = 180 \\  \\ a + c = 180 -  \frac{75}{2} \\  \\  a + c =  \frac{360 - 75}{2}  \\  \\ a + c =  \frac{285}{2}  \\  \\ therefore \:  \:  \:  \:  \:  \:  \: 2a =1 50 \\  \\ a = 75 \\  \\ c =  \frac{285}{2}  -  \frac{75}{1}  \\  \\ c =  \frac{135}{2} .

Answered by harshchhawal233
0

Step-by-step explanation:

\begin{gathered} \cot(a + b - c) = 1 \\ \\ a + b - c = 45 \: \: \: ...(i) \\ \\ \csc(b + c - a) = 2 \\ \\ b + c - a = 30 \: \: \: \: \: \: \: \: \: ...(ii) \\ \\ solving \: these \: \: \: we \: get \\ \\ 2b = 75 \\ \\ b = \frac{75}{2} \\ \\ a - c = 45 - \frac{75}{2} \\ \\ a - c = \frac{15}{2} \\ \\ \\ \\ by \: angle \: sum \: property \\ \\ a + b + c = 180 \\ \\ a + c = 180 - \frac{75}{2} \\ \\ a + c = \frac{360 - 75}{2} \\ \\ a + c = \frac{285}{2} \\ \\ therefore \: \: \: \: \: \: \: 2a =1 50 \\ \\ a = 75 \\ \\ c = \frac{285}{2} - \frac{75}{1} \\ \\ c = \frac{135}{2} .\end{gathered}

cot(a+b−c)=1

a+b−c=45...(i)

csc(b+c−a)=2

b+c−a=30...(ii)

solvingtheseweget

2b=75

b=

2

75

a−c=45−

2

75

a−c=

2

15

byanglesumproperty

a+b+c=180

a+c=180−

2

75

a+c=

2

360−75

a+c=

2

285

therefore2a=150

a=75

c=

2

285

1

75

c=

2

135

.

Similar questions