Class 11
______________________
Math Complex Numbers
______________________
1) Find The Square Root Of 4+3i
______________________
♪\(*^▽^*)/\(*^▽^*)/
Answers
here is ur ans...⚡⚡
=============================
Let the square root be a+bi. Then (a+bi)^2=(a^2-b^2)+2abi. So a^2-b^2=4 and 2ab=3.
Let a=3/(2b). Substitute into a^2-b^2=4 and simplify, yielding 4b^4+16b^2–9=0. Let c=b^2, which gives a quadratic in c. Solving the quadratic yields the solution c=-9/2, 1/2. Taking the square root yields b=3i/sqrt(2), 1/sqrt(2). Substitution yields a=-i/sqrt(2), 3/sqrt(2).
So there are two roots that when squared yield 4+3i — 3/sqrt(2)+i/sqrt(2) and -3/sqrt(2)-i/sqrt(2).
=============================
hope it helps!!✌✌
Given : 4 + 3i
Now,
On squaring both sides, we get
= > 4 + 3i = (x + iy)^2
We know that i^2 = -1.
= > 4 + 3i = x^2 - y^2 + 2ixy
= > 4 + 3i = (x^2 - y^2) + 2ixy
= > 4 = (x^2 - y^2) ------- (1)
and
2xy = 3 ----- (2)
---------------------------------------------------------------------------------------------------------------
Now,
We know that (X^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2
= > (x^2 + y^2)^2 = (4)^2 + (3)^2
= > (x^2 + y^2)^2 = 16 + 9
= > (x^2 + y^2)^2 = 25
= > (x^2 + y^2) = 5 ------ (3)
--------------------------------------------------------------------------------------------------------------
On solving (1) & (3), we get
= > x^2 - y^2 = 4
= > x^2 + y^2 = 5
--------------------
2x^2 = 9
x^2 = 9/2
Substitute x in (3), we get
--------------------------------------------------------------------------------------------------------------
Therefore,
Hope this helps!