Math, asked by 62parneet, 10 months ago

class 11 principal of mathematical induction ​

Attachments:

Answers

Answered by Anonymous
0

Let ,

 \sf \star \:  \: P(n) = 1 + 4 + 7 + ... + (3n + 2) =  \frac{n(3n - 1)}{2}  -  -  - (i)

LHS of eq (i) is

\sf \mapsto(3 × 1 - 2) \\  \\ \sf \mapsto</p><p>1

and

RHS of eq (i) is

\sf \mapsto \frac{1(3 \times 1 - 1)}{2}    \\  \\ \sf \mapsto1

 \sf \therefore \underline{LHS = RHS}

Therefore , P(1) is true

Assume P(k) is true , then

 \sf \star \:  \: P(k) = 1 + 4 + 7 + ... + (3k + 2) =  \frac{k(3k - 1)}{2}

For n = k + 1

 \sf \mapsto P(k + 1) = 1 + 4 + 7 + ... + (3k  -  2)  +  \{3(k   + 1)  -  2  \}=  \frac{(k + 1) \{3(k + 1) - 1  \}}{2} \\  \\ \sf \mapsto  P(k + 1) = P(k ) + 3k + 1=  \frac{(k + 1)(3k + 2)}{2}  \\  \\ \sf \mapsto  P(k + 1) = P(k ) + 3k + 1 =  \frac{3 {k}^{2}  + 2k + 3k + 2}{2}  \\  \\  \sf \mapsto P(k + 1) = P(k ) + 3k + 1 =   \frac{3 {k}^{2}  + 5k + 2}{2}

LHS :

 \sf \mapsto P(k + 1) = P(k ) + 3k   +   1   \\  \\  \sf \mapsto  P(k + 1) = \frac{k(3k - 1)}{2}  + 3k  + 1\\  \\  \sf \mapsto P(k + 1) = \frac{3 {k}^{2}  - k + 6k + 2}{2}  \\  \\  \sf \mapsto P(k + 1) = \frac{3 {k}^{2}   + 5k + 2}{2}

 \sf \therefore \underline{LHS = RHS}

Therefore , P(n) is true for all natural number

Similar questions