Math, asked by Koreaditya47, 1 year ago

Class 11th
plz help me​

Attachments:

Answers

Answered by mysticd
0

Answer:

 \red {\sum (r+1)(2r-1)}  \green {=r\left(\frac{4r^{2}+9r-1}{6}\right)}

Step-by-step explanation:

/* Upper boundary is not mentioned here .

 \sum (r+1)(2r-1) \\= \sum (2r^{2}-r+2r-1)

= \sum (2r^{2} + r - 1)\\= 2\sum r^{2} + \sum r - \sum 1

= 2\left(\frac{r(r+1)(2r+1)}{6}\right)+ \frac{r(r+1)}{2} - r

= r\left(\frac{(r+1)(2r+1)}{3} + \frac{r+1}{2} - 1 \right)\\= r\left(\frac{(2r^{2}+3r+1)}{3} + \frac{r+1}{2} - 1 \right)

=r\left( \frac{2(2r^{2}+3r+1)+3(r+1)-6)}{6}\right)\\=r\left( \frac{4r^{2}+6r+2+3r+3-6}{6}\right)\\= r\left(\frac{4r^{2}+9r-1}{6}\right)

Therefore.,

 \red {\sum (r+1)(2r-1)}  \green {=r\left(\frac{4r^{2}+9r-1}{6}\right)}

•••♪

Similar questions