Math, asked by prabhleensaini163, 3 months ago

Class 7 maths. Solve using transposition method. ​

Attachments:

Answers

Answered by Anonymous
122

Answer:

Question

\blue \longrightarrow \sf \dfrac \pink{3} \pink{4} \purple{ (2m - 9)}=  \dfrac \pink{21} \pink{40} \purple{ (5m - 30)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Required Solution

  \red\longmapsto\sf \dfrac \pink{3} \pink{4} \purple{ (2m - 9)}=  \dfrac \pink{21} \pink{40} \purple{ (5m - 30)}

\red \longmapsto\sf\dfrac \pink{(2m - 9)} \pink{(5m - 30)} =   \dfrac \purple{21} \purple{40}  \times  \dfrac \purple{4} \purple{3}

\red \longmapsto\sf\dfrac \pink{(2m - 9)} \pink{(5m - 30)} =   \cancel\dfrac\purple{84} \purple{120}

\red \longmapsto\sf\dfrac \pink{(2m - 9)} \pink{(5m - 30)} =  \dfrac \purple{7} \purple{10}

{  \red\longmapsto \sf \pink{{(( 2m \times 10) -  \purple{(9 \times10))}} ={ ((5m \times 7) - \purple{ (30 \times 7))}}}}

  \red \longmapsto\sf \pink{(20m} -  \purple{90)} = \pink {(35m} -  \purple{210)}

  \red \longmapsto\sf \pink{35m - 20m} =  \purple{90 - 210}

 \red  \longmapsto \sf \pink{15m}=   \purple{- 120}

 \red \longmapsto \sf \pink{m} =  \purple{ \dfrac{ - 120}{15} }

  \red\longmapsto \sf \pink{m} =  \purple{ - 8}

  \large\boxed{\frak {\pink{M}= \purple{-8}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Verification

Here we know the value of m is -8

So, Now putting value of m in equation.

  \red\longmapsto\sf \dfrac \purple{3} \purple{4} \pink{ (2m - 9)}=  \dfrac \purple{21} \purple{40} \pink{ (5m - 30)}

{  \red\longmapsto\sf \dfrac \purple{3} \purple{4} \pink{ ((2 \times  - 8) - 9)}=  \dfrac \purple{21} \purple{40} \pink{( (5 - 8) - 30)}}

\red\longmapsto\sf \dfrac \purple{3} \purple{4} \pink{ ( - 16 - 9)}=  \dfrac \purple{21} \purple{40} \pink{ ( - 40 - 30)}

  \red\longmapsto\sf \dfrac \purple{3} \purple{4} \pink{ (7)}=  \dfrac \purple{21} \purple{40} \pink{ (10)}

  \red\longmapsto\sf \dfrac \purple{3 \times 7} \purple{4}=  \dfrac \pink{21 \times 10}\pink  {40}

  \red\longmapsto\sf \dfrac \purple{21} \purple{4} =   \cancel\dfrac \pink{210} \pink{40}

\red\longmapsto\sf \dfrac \purple{21} \purple{4} = \dfrac \pink{21} \pink{4}

 \large  \boxed{\sf \purple{LHS }= \pink {RHS }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, Verified

Answered by decerie
3

Answer:

hello loveyouhindi can you help my math question check my question

Similar questions