Math, asked by seemarun4530, 1 month ago

Class 8
explain it don't write single answer​

Attachments:

Answers

Answered by 00himadriSharma00
1

Answer to your question is in the attachment

Hope this helps

Attachments:
Answered by ZaraAntisera
0

Answer:

1= \mathrm{Simplify}\:\left(\frac{2^5}{2^8}\right)^2\cdot \:2^{-5}:\quad \frac{1}{2048}\quad \left(\mathrm{Decimal:\quad }\:0.00048\dots \right)

Steps

\left(\frac{2^5}{2^8}\right)^2\cdot \:2^{-5}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}

=\frac{1}{2^5}\left(\frac{2^5}{2^8}\right)^2

=\frac{1}{2^6}\cdot \frac{1}{2^5}

\mathrm{Multiply\:fractions}:\quad \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}

=\frac{1\cdot \:1}{2^6\cdot \:2^5}

=\frac{1}{2^6\cdot \:2^5}

=\frac{1}{2^{11}}

=\frac{1}{2048}

= 2048

2= -4^{-3}\cdot \:5^{-3}\cdot \left(-5^3\right)=\frac{1}{64}\quad \left(\mathrm{Decimal:\quad }\:0.015625\right)

Steps

-4^{-3}\cdot \:5^{-3}\left(-5^3\right)

\mathrm{Apply\:the\:rule}:\quad \:-a\left(-b\right)=ab

-4^{-3}\cdot \:5^{-3}\left(-5^3\right)=4^{-3}\cdot \:5^{-3}\cdot \:5^3

=4^{-3}\cdot \:5^{-3}\cdot \:5^3

=4^{-3}\cdot \:1

=4^{-3}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}

=\frac{1}{4^3}

4^3=64

=\frac{1}{64}

3= \mathrm{Simplify}\:\frac{1}{8}\cdot \:3^{-3}:\quad \frac{1}{216}\quad \left(\mathrm{Decimal:\quad }\:0.00462\dots \right)

Steps

\frac{1}{8}\cdot \:3^{-3}

\mathrm{Multiply\:fractions}:\quad \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}

=\frac{1\cdot \:1}{8\cdot \:3^3}

\mathrm{Multiply\:the\:numbers:}\:1\cdot \:1=1

=\frac{1}{3^3\cdot \:8}

=\frac{1}{216}

4= -3^4\left(\frac{5}{3}\right)^4=-625

Steps

-3^4\left(\frac{5}{3}\right)^4

=-3^4\cdot \frac{5^4}{3^4}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=-\frac{5^4\cdot \:3^4}{3^4}

\mathrm{Cancel\:the\:common\:factor:}\:3^4

=-5^4

5^4=625

=-625

Hope it helps you

Eva*

Similar questions