Math, asked by kruanal, 2 months ago

CLASS 9 MATH CHAPTER 6 LINES AND ANGLES KAI QUESTION HAI PLEASE TELL KAISE KREGY??????????

Attachments:

Answers

Answered by Bartaa
1

Answer:

3.  x = 50°

  ∠AOD = ( x + 10° ) = 50° + 10° = 60°

  ∠COD = x = 50°

   ∠BOC = x + 20° = 50° + 20° = 70°

5.  a = 130°

    b = 50°

10.  x = 45°

9.  x = 55°

8.  x = 30°      

Step-by-step explanation:

3. Given: ∠AOD = ( x + 10° ), ∠COD = x and ∠BOC = x + 20°.

   We know that the sum of all the angles in a straight line is 180°

    ∠AOD + ∠COD + ∠BOC = 180°

    ( x + 10° ) + ( x ) + ( x + 20° ) = 180°

    3x + 30° = 180°

    3x = 180° - 30°

    3x = 150°

    x = 150° / 3

    x = 50°

    ∠AOD = ( x + 10° ) = 50° + 10° = 60°

    ∠COD = x = 50°

    ∠BOC = x + 20° = 50° + 20° = 70°

5. Given: ∠BOC = b and ∠AOC = a form linear pair & a - 2b = 30°.

   To find: a and b

    ∠AOC + ∠BOC = 180°       ——————— [ Linear Pair ]

     a + b = 180°    ————— Equation (i)

     Equation given :

     a - 2b = 30°    ————— Equation (ii)  

  Equation (ii) - Equation (i) gives

     -3b = 30° - 180°

      3b = 150°

        b = 150° / 3

        b = 50°

  Substituting b = 50° in Equation (i)

       a + 50° = 180°

                 a = 180° - 50°

                 a = 130°

  ∴ a = 130° and b = 50°

10. Given: POS is a line. ∠POQ = 60°, ∠QOR = 4x and ∠ROS = 40°

     We know that the sum of all the angles in a straight line is 180°

     ∠POQ + ∠QOR + ∠ROS = 180°

     60° + 4x + 40° = 180°

     100° + 4x = 180°

      4x = 180° - 100°

      4x = 80°

      x = 180° / 4

   ∴ x = 45°

9. Given: AOC is a line. ∠AOB = 70° and ∠BOC = 2x.

    We know that the sum of all the angles in a straight line is 180°

    ∠AOB + ∠BOC = 180°

     70° + 2x = 180°

     2x = 180° - 70°

     2x = 110°

     x = 110° / 2

 ∴  x = 55°

8. In the given figure

      3x +  3x + x + 150° = 360°

      7x = 360° - 150°

      7x = 210°

      x = 210° / 7

      x = 30°      

Similar questions