CLASS X MATHS...
1.If α and β are zeroes of the polynomial x²-2x-15 then form a quadratic polynomial whose zeroes 2α and 2β.
2.If the sum of the zeroes of the polynomial f(t)=kt²+2t+3k is equal to the product then the value of k is________?
3.Find the value of a for which (x-a) is a factor of f(x) =-x³+ax²+3x+9.
4.If x-a/b+a + x-b/c+a + x-c/a+b = 3 then the value of x is______?
Answers
2α+ 2β = 4 4αβ = - 60
x² - 4 x - 60
2) - 2 / k = 3k/k => k = -2/3
3) f(a) = - a³ + a a² + 3a + 9 = 3 a + 9 = 0 => a = -3
4)
[tex](a+b)*[x(a+b+2c)-(a^2+b^2+ac+bc)]\\.\ \ \ \ \ = (ab+ac+bc+c^2) * (3a+3b+c-x)\\\\x[(a+b)(a+b+2c)+(ab+ac+bc+c^2)]=\\.\ \ \ \ (ab+ac+bc+c^2) * (3a+3b+c)+(a+b)(a^2+b^2+ac+bc)\\\\x[a^2+3ab+b^2+3ac+3bc+c^2][/tex]
[tex].\ \ \ \ \ =(3a^2b+3a^2c+7abc+4ac^2+3ab^2+3b^2c+4bc^2+c^3)\\.\ \ \ \ \ \ \ \ +a^3+ab^2+a^2c+abc+a^2b+b^3+abc+b^2c\\\\x[a^2+3ab+b^2+3ac+3bc+c^2]\\.\ \ \ \ =a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2\\\\x=\frac{a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2}{a^2+3ab+b^2+3ac+3bc+c^2}[/tex]
Step-by-step explanation:
1)
α+β = 2
αβ = -15
2α+ 2β = 4
4αβ = - 60
x² - 4 x - 60
2)
- 2 / k = 3k/k
=> k = -2/3
3)
f(a) = - a³ + a a² + 3a + 9 = 3 a + 9 = 0
=> a = -3
4)
Here's the fastest way I know how:
Subtract 3 from both sides but creatively
x−a −1 + x−b −1 + x−c −1 = 0
b+c a+c a+b
x - a - b - c + x - a - b - c + x - a - b - c = 0
b + c a + c a + b
Taking common:
(x−a−b−c)×k=0
Where k is some random expression in a,b, and c.
This implies,
x−a−b−c=0
x=a+b+c.
HOPEFULLY THIS MIGHT HELP YOU!!!