Clear selec
2.
If a+b+c =12 and ab + bc +ac = 22, find the
value of a3 +b3 + c3 - 3abc.
Answers
Question :
If a+b+c =12 and ab + bc +ac = 22, find the value of a³ + b³ + c³ - 3abc
To find :
value of a³ + b³ + c³ - 3abc
Given Data :
→ a+b+c =12
→ ab + bc +ac = 22
Formula :
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- (a + b + c)(a² + b² + c² - ab - bc - ca) = a³ + b³ + c³ - 3abc
Solution :
First we need to get a² + b² + c²
So we will apply the first formula : (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
By putting the values we get :
- (12)² = a² + b² + c² + 2(22)
- a² + b² + c² = 144 - 44
- a² + b² + c² = 100
Now we will apply the second formula to get a³ + b³ + c³ - 3abc
(a + b + c)(a² + b² + c² - ab - bc - ca) = a³ + b³ + c³ - 3abc
By putting the values we get :
- (12)(100 - ab - bc - ca) = a³ + b³ + c³ - 3abc
We have to take - 1 as common to get ab + bc + ca by factorisation.
- (12)[100 - 1(ab + bc + ca)] = a³ + b³ + c³ - 3abc
- a³ + b³ + c³ - 3abc = (12)[100 - 1(22)]
- a³ + b³ + c³ - 3abc = 12(100 - 22)
- a³ + b³ + c³ - 3abc = 12 × 78
- a³ + b³ + c³ - 3abc = 936
So the value of a³ + b³ + c³ - 3abc = 936
ADDITIONAL INFORMATION :
→ Factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
→ For example, 3 × 5 is a factorization of the integer 15, and is a factorization of the polynomial x² – 4.