Coefficient of x^(3) in the expansion of tan x is
a 1/4
b 2/15
c 1/3
d 1/2
Answers
Answer:
c 1/3.
Step-by-step explanation:
Correct option is c 1/3
Given:
Expansion of tan x
To Find:
coefficient of x³ in the expansion of tan x
Solution:
We know as per maclaurin series,
f(x) = f(0)+ x. f'(0)/1! + x². f''(0)/2! + x³ f'''(0)3!+..xⁿ.f⁽ⁿ⁾(0)n!+...
now put f(x) = tanx
ao,
⇒ f(x) = tan(x)
f(0) = 0
⇒ f'(x) = sec²x
f'(0) = 1
⇒ f''(x)=(2secx)(secxtanx)
=2sec²x.tanx
=2(1+tan2x).tanx
=2(tanx+tan³x)
f''(0) = 0
⇒ f'''(x) = 2{sec²x+3tan²xsec²x}
=2sec²x{1+3tan²x}
=2sec²x{1+3(sec²x−1)}
=2sec²x{1+3sec²x−3}
=6sec⁴x−4sec²x
f'''(0) = 2
put this value in above equation,
⇒ f(x) = f(0)+ x. f'(0)/1! + x². f''(0)/2! + x³ f'''(0)3!+..xⁿ.f⁽ⁿ⁾(0)n!+...
⇒ tanx = 0 + x 1/1 + x². 0/2 + x³. 2/6 +....
⇒ tanx = x + 1/3 x³ +......
Hence, the cofficient of x³ is 1/3.