Col. Find the area of the minor segment of a
circle of radius 14cm, when the angle of
the corresponding sector is goº
Answers
Answer:
Answer
Giventhat−
thecentralangle∠AOBofasector=60
o
andtheradius=14cm.
Tofindout−
theareaofthecorrespondingminorsegment.
Solution−
InΔAOBwehaveOA=OB.
∴∠OAB=∠OBA⟹∠OAB+∠OBA=2∠OABor2∠OBA.
Now∠AOB=60
o
.
∴2∠OAB=180
o
−60
o
⟹∠OAB=60
o
=∠OBA.
(theanglesumpropertyoftriangles).
SoΔAOBisequilateralonewithsidea=14cm.
∴ar.ΔAOB=
4
3
×a
2
=
4
3
×14
2
cm
2
=49
3
cm
2
.
Alsoar.sector=
360
o
θ
×π×r
2
whenθisthecentralangleand
r=radiusofthesector
=
360
o
60
o
×
7
22
×14
2
cm
2
=
3
308
cm
2
.
Nowar.minorsegment=ar.sector−ar.Δ
=
3
308
cm
2
−49
3
cm
2
=(
3
308
−49
3
)cm
2
.
I hope help you follow yaar please mark brainlist please follow
Given :
• Radius of the circle =14cm
• The angle of the corresponding sector =60 degree
To Find :
• The area of minor segment of the circle =?
Solution :
Let the centre of the circle be O.
Let the radii of the sector be OA and OB.
Given,
In the ΔAOB ,OA = OB, so it is isosceles.
Hence , ΔAOB is Equilateral.
Hence OA=OB=14cm