Math, asked by helingeswara9b, 7 months ago

Compare the following pair of surd.6√2 , 5√5​

Answers

Answered by 46omkar7
16

6 \sqrt{2}  =  \sqrt{2 \times 6 \times 6}  =  \sqrt{72}  \\  \\ 5 \sqrt{5}  =  \sqrt{5 \times 5 \times 5}  =  \sqrt{125} \\  \\ Since, \: 72 < 125 \\ \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ∴ \sqrt{72}   <  \sqrt{125}  \\ \\   \:  \:  \:   \:  \:  \:  \:  \: ∴ \green{ \boxed{6 \sqrt{2}  < 5 \sqrt{5}}}

Answered by pulakmath007
0

SOLUTION

TO DETERMINE

Compare the pair of surds 6√2 , 5√5

EVALUATION

Here the given surds are 6√2 , 5√5

Now

 \sf 6 \sqrt{2}

 \sf =  \sqrt{ {6}^{2}  \times 2}

 \sf =  \sqrt{ 36  \times 2}

 \sf  =  \sqrt{72}

Again

 \sf 5 \sqrt{5}

 \sf  =  \sqrt{ {5}^{2}  \times 5}

 \sf  =  \sqrt{25 \times 5}

 \sf  =  \sqrt{125 }

Now

125 > 72

\displaystyle \sf{ \implies  \sqrt{125} >  \sqrt{72}  }

\displaystyle \sf{ \implies  5\sqrt{5} > 6 \sqrt{2}  }

FINAL ANSWER

 \boxed{ \:  \: \displaystyle \sf{   5\sqrt{5} > 6 \sqrt{2}  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions